首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 154 毫秒
1.
为研究端羟基聚丁二烯(hydroxyl-terminated polybutadiene,HTPB)基浇注PBX炸药的固化反应特性确定其固化工艺参数,采用非等温DSC法研究HTPB基浇注PBX炸药粘接剂体系固化反应动力学.分别测试升温速率为5、10、15、20 K/min时的DSC数据,得出固化反应动力学方程,计算不同温度下的反应速率常数,绘制固化速率(dα/dt)~固化度(α)关系曲线,并给出常用HTPB基浇注固化炸药的固化温度范围.结果表明:相同固化度条件下,升温速率越大,固化反应速率越大,当固化度达到0.5时,固化反应速率达到最大值,此后逐渐降低,直至为零.  相似文献   

2.
为了研究新型含能增塑剂(2,2-二硝基丙基)-2-己基癸酸酯(A16)对端羟基聚丁二烯(HTPB)的增塑性能,采用分子动力学方法对HTPB与A16进行了相容性模拟,对增塑比2∶1~1∶1.5、温度30~70℃条件下HTPB/A16和HTPB/DOS体系的表观黏度进行了研究,并测试了两种体系的力学性能。结果表明:HTPB、A16各自分子间作用以范德华力为主,HTPB与A16的溶度参数差值仅为0.004(J·cm~(-3))~(1/2),二者具有非常好的相容性;HTPB/A16体系的表观黏度高于HTPB/DOS体系,但随着增塑剂质量比的提高或温度的提高,两种体系的表观黏度差异减小,当增塑比为1∶1,温度为70℃时,HTPB/A16与HTPB/DOS体系的黏度差仅为60.5 cP,A16与DOS的降黏效果相当;在相同增塑比条件下,HTPB/A16固化胶的拉伸强度和延伸率均比HTPB/DOS固化胶大,HTPB/A16固化胶的拉伸性能优于HTPB/DOS;增塑比为1∶1时,HTPB/A16固化胶的断裂延伸率比HTPB/DOS提高18.6%,模量降低8.6%,A16对HTPB的增塑效率高于DOS。  相似文献   

3.
卵磷脂对HTPB-苯乙烯溶液流变特性的影响   总被引:1,自引:1,他引:0  
谢虓  鲁洪  王云  罗观 《含能材料》2015,23(8):760-765
采用黏度法考察卵磷脂对端羟基聚丁二烯(HTPB)-苯乙烯溶液流变特性的影响。以黏度变化因子C为指标,表征卵磷脂与HTPB分子间相互作用大小,通过这一方法,探讨了混合溶液体系中卵磷脂与HTPB的共混行为,同时比较了两者相对含量变化对其相互作用的影响。结果表明:随着卵磷脂含量增加,溶液的黏度随之增大,呈现出更加显著的非牛顿流体特性;而混合溶液的流动活化能(E)呈现先减小后增大的趋势,HTPB与卵磷脂分子间相互作用呈现先增大后减小的趋势。当卵磷脂质量分数增加至0.053时,C增至最大值0.165,E/R降至最小值,1004.9。  相似文献   

4.
非等温DSC研究Al/HTPB/TDI体系的固化反应动力学   总被引:9,自引:5,他引:4  
采用非等温差示扫描量热法(DSC)研究了铝粉对端羟基聚丁二烯/甲苯二异氰酸酯体系(HTPB/TDI)固化反应动力学的影响.结果表明,HTPB/TDI体系的固化反应表观活化能约为51.826 kJ·mol-1,反应级数为0.926,指前因子为2.412×105 min-1; 加入铝粉后,体系的固化峰温降低,表观活化能、反应级数和指前因子分别提高至76.402 kJ·mol-1、0.944、2.53×108 min-1,机理函数仍遵循Avrami-Erofeev方程G(α)=[-ln(1-α)]n,只是方程中的指数n有所变化.铝粉对HTPB/TDI固化反应的影响表现为在反应程度18%前起加速作用,18%后起延缓作用.浅析了铝粉影响HTPB/TDI体系固化的原因.  相似文献   

5.
石蜡/HTPB燃料的力学性能   总被引:1,自引:0,他引:1  
王印  王飞  胡松启  刘林林  刘辉 《含能材料》2019,27(5):398-403
为了研究端羟基聚丁二烯(HTPB)体系质量分数以及温度对石蜡/HTPB燃料力学性能的影响,制备了7种不同配方石蜡/HTPB拉伸试件,并使用万能材料试验机以10 mm·min~(-1)拉伸速率进行了单轴拉伸实验,分析了燃料的最大抗拉强度、断裂伸长率和初始弹性模量变化规律。结果表明,随着HTPB体系质量分数增加,燃料的断裂伸长率增大,而最大抗拉强度和初始弹性模量皆减小;当环境温度较高(接近石蜡熔点58℃)时,燃料的最大抗拉强度和初始弹性模量皆随着HTPB质量分数增加而增大;燃料的最大抗拉强度随温度降低而逐渐增大,其中当温度由20℃降低至-40℃时,H20燃料最大抗拉强度由1.189 MPa升高至2.150 MPa;以HTPB体系为基体、石蜡为填料的石蜡/HTPB燃料,在其基体与填料的界面上存在相互阻滞作用力,可提高燃料的力学性能。  相似文献   

6.
在各种推进剂中,高氯酸铵(AP)/端羟基聚丁二烯(HTPB)系复合推进剂应用最广,本研究调制了具有各种颗粒特性的AP,研究了其燃烧特性,并依此提出了AP/HTPB系复合推进剂的设计准则.  相似文献   

7.
GAP/HTPB共混粘合剂体系的力学性能研究   总被引:2,自引:1,他引:1  
倪冰  覃光明  冉秀伦 《含能材料》2010,18(2):167-173
利用端羟基聚丁二烯(HTPB)粘合剂和端羟基叠氮聚醚(GAP)共混,以改善纯GAP粘合剂的力学性能;探讨各种固化反应条件对共混粘合剂力学性能的影响;静态拉伸测试结果显示共混胶片的确产生了协同效应,GAP与HTPB质量比11时,常温下粘合剂拉伸强度可达到3.833MPa,最大延伸率可达593%。动态热机械测试(DMA)结果显示,通过调整固化工艺条件,能够使得GAP与HTPB本不相容的两相产生反应增容,损耗因子-温度(Tanδ-T)曲线在-60.2℃附近出现单一的玻璃化温度;SEM照片更从微观形态上印证了以上两点。结果显示,HTPB与GAP共混粘合剂体系具有良好的力学性能,对GAP在复合固体推进剂中的应用具有一定的参考价值。  相似文献   

8.
金属燃料添加剂在黏合剂中的分散特性将极大影响火炸药的工艺性能.以两种不同形貌(球形和片状)的新型亚稳态分子间复合物铝/聚偏氟乙烯(QAlPV和PAlPV)为对象,利用RS?300流变仪,系统研究了端羟基聚丁二烯(HTPB)、聚叠氮缩水甘油醚(GAP)和环氧乙烷四氢呋喃共聚醚(PET)典型黏合剂与两种铝基复合物形成的混合体系的流变性能.结果表明,悬浮液体系均表现出假塑性流体特征,在20~60℃内,随温度增加,表观黏度均减小.在GAP和PET体系中,含PAlPV混合体系的流动活化能均大于含QAlPV混合体系,说明片状结构的铝基复合物与这两种黏合剂形成的混合体系的刚性较大,其表观黏度对温度更敏感.因此,可通过提高温度来改善PAlPV在黏合剂中的分散性;而QAlPV与GAP、PET形成混合体系的柔性较大,可通过提高剪切速率来改善其分散性和均匀性.  相似文献   

9.
采用气相反相色谱技术(IGC)研究了端羟基聚丁二烯(HTPB)粘合剂的表面物理化学性质。结果表明,HTPB的色散分量随着温度的升高而降低,总表面自由能表现出与色散分量相一致的规律。与聚乙烯相比,HTPB具有更高的表面自由能,因为HTPB表面含有羟基。极性分量以及酸、碱分量随着温度的升高而逐渐增大,酸性分量比碱性分量大,且对温度更敏感、增大的更快,这表明HTPB显示较强的布伦斯特酸性。  相似文献   

10.
DSC-FTIR联用研究HTPB/AP和HTPB/AP/Al体系的热分解   总被引:3,自引:2,他引:3  
采用高压差示扫描量热(PDSC)、热重(TG-DTG)以及热红联用(DSC-FTIR)技术研究了HTPB/AP复合体系热分解及压力和铝粉对该体系的影响。结果表明,端羟基聚丁二烯(HTPB)包覆去活作用推迟了AP的热分解过程,但AP加速了HTPB的分解。增大压力和加入铝粉均能加速HTPB/AP复合体系的热分解过程,燃速也因此而提高。同时增大压力也使HTPB分解放热产生多峰现象,而铝粉会抑制该现象。此外,AP还使HTPB发生“后固化”过程,随着压力的增大,该过程的固化热也增大。  相似文献   

11.
石蜡燃料的燃烧性能与其化学组成的关系   总被引:2,自引:1,他引:1  
为了研究石蜡的燃烧性能与其化学组成之间的关系,针对54~#、58~#、62~#和66~#4种粗晶石蜡开展了气相色谱分析,并测试了4种石蜡的燃烧热和在氧气流中的瞬时退移速率,同时利用N ASA-C EA软件计算了4种石蜡燃料不同氧燃比下的能量特性。结果表明:54~#、58~#、62~#和66~#4种粗晶石蜡的平均分子式分别为C_(26.40)H_(54.80)、C_(27.59)H_(57.18)、C_(28.02)H_(58.04)和C_(32.11)H_(66.22),正构烷烃含量分别为92.79%、89.44%、88.36%和84.55%;平均碳数n越大、正构烷烃含量越小的石蜡其燃烧热越低;随着平均碳数n值的增大以及正构烷烃含量的降低,石蜡的退移速率降低。NASA-CEA程序计算得到4种石蜡的能量特性受其化学组成的影响很小,其最佳氧燃比均为2.7,对应的理论比冲约为354 s,绝热火焰温度约为3600 K。  相似文献   

12.
增塑剂类型对浇注PBX药浆表观粘度的影响   总被引:1,自引:0,他引:1  
采用分子动力学(MS)Blend方法,对端羟基聚丁二烯(HTPB)粘合剂与增塑剂癸二酸二辛酯(DOS)、己二酸二辛脂(DOA)、壬酸异癸酯(IDP)共混体系相容性进行了模拟计算,并对质量比1∶1 HTPB-Ⅲ/增塑剂及其84%固相填料浇注PBX药浆不同温度时的粘度进行了测试。结果表明:根据Blend法,可以得出增塑剂优劣次序依次为HTPB/IDP、HTPB/DOA、HTPB/DOS;随着温度升高,药浆表观粘度降低;不同增塑剂药浆表观粘度不同,其粘度从小到达依次为IDP、DOA、DOS,药浆表观粘度测试结果与模拟计算结果一致。  相似文献   

13.
浇注高聚物粘结炸药的粘结剂体系设计及其应用研究   总被引:1,自引:0,他引:1  
为提高端羟基聚丁二烯(HTPB)基浇注高聚物粘结炸药(PBX)的固相含量、力学性能,并降低渗油性,采用己二酸二辛酯和壬酸异癸酯为原料,根据溶度参数近似原理设计了一种复合 增塑剂AI.基于HTPB/AI粘结剂体系制备出固相含量达到90%的浇注PBX,研究了PBX的机械感度、热分解、固相含量等与粘结剂体系的关系。结果表明:复合增塑剂AI降低了HTPB胶片的模量,从而降低了PBX的机械感度;AI降低了浇注PBX药浆黏度,提高了固相含量,从而提升了能量水平;对原材料进行高温真空旋蒸处理,降低了原材料中水分等杂质的含量,从而降低了PBX的渗油性,提高了复合增塑剂的安定性及其与PBX配方中其他组分的相容性。  相似文献   

14.
PBX(高聚物粘结炸药)固化后的内部结构直接影响其安全性,影响PBX结构形成的外界因素成为控制PBX安全性的主要条件。本文研究了不同固化温度下PBX的粘结强度、压缩强度和微观结构。结果表明:固化温度从60℃逐渐增加至100℃时,分子量为1 500的HTPB的粘结强度从342k Pa降为280k Pa;分子量为2 800的HTPB的粘结强度从389k Pa降为310k Pa;分子量为3 400的HTPB的粘结强度从399k Pa降为352k Pa;分子量为4 000的HTPB的粘结强度从390k Pa降为354k Pa。在此温度区间内,随着温度的增加,固化后PBX沿径向的压缩强度梯度增加,PBX粘结剂出现鼓包和裂纹及固体颗粒的裸露现象。从PBX内部性能的均匀性和安全性考虑,选取固化温度为60℃的固化工艺。  相似文献   

15.
杜永强  郑坚  支建庄  张晓 《含能材料》2019,27(9):786-791
为了对定应变贮存老化条件下端羟基聚丁二烯(HTPB)衬层横向弛豫特性和交联密度的变化规律进行研究,设计了0%、5%、10%、15%定应变水平下HTPB衬层的加速老化试验,采用低场~1H NMR CPMG序列对HTPB衬层的质子横向弛豫衰减曲线进行了测试,并根据修正的单链模型计算得到了HTPB衬层的交联密度,分析了交联密度的变化规律,同时建立了考虑物理拉伸和化学老化因素的交联密度老化模型,对老化模型参数的影响因素和变化规律进行了研究。结果表明,定应变贮存老化条件下HTPB衬层的交联密度呈现先增大后降低的趋势,定应变的存在会导致HTPB衬层的应力松弛时间增加,但是对HTPB衬层的老化反应速率常数没有显著的影响。建立的交联密度老化模型的具体形式为ν_(NMR)(ε,t)=ν_(p0)(ε)τ(ε)[1-exp(-t/τ(ε))]+ν_(ini)-k (ε) t,该模型与试验结果的相关系数R0.9500(5%定应变时相关系数R0.9000),可以用来描述定应变条件下HTPB衬层交联密度的老化规律。  相似文献   

16.
陈军 《弹道学报》2020,32(1):55-63
为了解决固体火箭推进剂高温高压燃气输运系数难以实验测量和理论预估的实际问题,考虑燃气中含有H2O、HCl、SO2等强极性组分和H2等轻质组分,通过大量文献实例验证,归纳了适于这些组分及其混合物在高温高压条件下的黏性系数和导热系数计算方法,计算了双基推进剂(DB)、改性双基推进剂(CMDB)和复合推进剂(CP)3种主要固体推进剂燃气在不同温度(1 500~3 800 K)和压强(8~20 MPa)下的黏性系数、导热系数和普朗特数,得到了固体火箭发动机燃气黏性系数和导热系数随温度变化的幂指数函数规律和典型普朗特数取值。所得结果对于促进高温高压气体混合物输运性质的深入研究、火箭发动机燃烧及其内外流动仿真,均具有重要的实际应用意义。该方法没有考虑凝聚相对输运性质的影响。  相似文献   

17.
江晓瑞  李卓  鲁荣  黄大辉 《含能材料》2020,28(8):724-730
为研究丁羟推进剂浇注过程中流场结构,使用改进后的Herschel-Bulkley黏度模型对药浆花板浇注过程进行了数值模拟,并与实验数据进行了对比。结果显示:在通过花板孔后药浆会发生汇流,汇流后的药浆在重力作用下在发动机壳体内堆积,堆积表面呈现不规则的凹凸状,但在重力作用下,药浆会逐渐流平并填满空腔,未形成空洞。被花板分割的药条一部分汇聚后沿翼片间凹槽向下流动,一部分直接向下流动,流动过程中出现拉伸断裂的现象。浇注所需总时间为104 min,浇注药浆总质量为160.3 kg,平均质量流率为5.4 g·(hole·min)-1,仿真计算值与实测值误差分别为8.65%、2.06%和5.93%。  相似文献   

18.
为了解不同催化剂[二月桂酸二丁基锡(DBTDL)、乙酰丙酮铁(Fe AA)、辛酸亚锡(TECH)、三亚乙烯二胺(DABCO)、三苯基铋(TPB)、纳米氧化锌(nano-ZnO)]条件下HTPB/IPDI黏结剂体系的固化过程,采用黏度法研究了45℃时,不同催化剂作用下,端羟基聚丁二烯(HTPB)/异佛尔酮二异氰酸酯(IPDI)体系的黏度-时间关系,并探讨了固化反应速率的变化。结果表明,45℃时,无催化剂和不同催化剂作用下HTPB/IPDI体系的流变反应速率常数分别为:k_(blank)=0.002,k_(DBTDL)=0.045,k_(FeAA)=0.0439,k_(TECH)=0.0335,k_(DABCO)=0.0051,k_(TPB)=0.0036,k_(nano-ZnO)=0.0034。不同催化剂对HTPB/IPDI体系固化反应速率常数的影响效果为:DBTDLFe AATECHDABCOTPBnano-ZnO。在HTPB/IPDI体系中,使用DBTDL,Fe AA,TECH,DABCO,TPB,nano-ZnO作为催化剂时,黏结剂体系的适用期分别为0.3,0.7,1.9,6.7,16,18 h。通过固化过程中浆料适用期和反应速率常数k的变化情况分析,认为TPB更适合作为HTPB/IPDI体系的固化催化剂。黏度对数随时间的增长趋势均呈现出前期快后期慢,向图线右下方偏离的两阶段现象。造成这一现象的主要原因是由于IPDI中NCO基团反应活性的明显差异导致:IPDI中的伯NCO基受到环己烷环和甲基的位阻效应,其反应活性明显低于环上的仲NCO基的反应活性。  相似文献   

19.
庞爱民  刘学 《含能材料》2019,27(11):961-966
为了降低丁羟高燃速推进剂机械感度,考察了液体二茂铁燃速催化剂(EMT)含量、氧化剂高氯酸铵(AP)粒径及配比等对丁羟高燃速推进剂机械感度的影响,并通过差示扫描-热重(DSC-TG)热分析研究了AP/EMT体系热分解特性与机械感度的相关性。结果表明,细AP含量增加或细AP粒径减小时,推进剂药浆的摩擦感度和撞击感度均呈增加趋势;EMT提高了AP的高温分解反应速率常数和分解热,是含EMT的高燃速推进剂机械感度升高的微观原因,降低EMT含量,可以降低推进剂的机械感度;胺盐类降感剂GZJ-01和导电态聚苯胺降感剂DBJ-01对降低丁羟高燃速推进剂的机械感度无协同效应;细AP包覆和采用铜盐燃速催化剂(GRCJ)取代EMT均可以降低丁羟高燃速推进剂的机械感度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号