首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The energy levels, multipole (E1, M1, E2, and M2) transition rates, and electron-impact collision strengths are calculated for Sn XXIII. The data refer to 107 fine-structure levels belonging to the configurations (1s22s22p6)3s23p63d10, 3s23p63d94?, 3s23p53d104?, and 3s3p63d104?(? = s, p, d, and f). The collision strengths are calculated with a 20-collision-energy grid in terms of the energy of the scattered electron between 37.5 and 8436 eV by using the distorted-wave approximation. Effective collision strengths are obtained at five electron temperatures, Te (eV) = 193.89, 387.78, 581.67, 775.57, and 969.46, by integrating the collision strengths over a Maxwellian electron distribution.  相似文献   

2.
The energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for La XXX. The data refer to 107 fine-structure levels belonging to the configurations (1s22s22p6)3s23p63d10, 3s23p63d94l, 3s23p53d104l, and 3s3p63d104l (l = s, p, d, f). The collision strengths are calculated with a 20-collision-energy grid in terms of the energy of the scattered electron between 10 and 10,000 eV by using the distorted-wave approximation. Effective collision strengths are obtained at seven electron temperatures: Te (eV) = 10, 100, 300, 500, 800, 1000, and 1500 by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like La X-ray laser at 8.8 nm.  相似文献   

3.
Energy levels, oscillator strengths, and electron impact collision strengths have been calculated for Ni-like ions of Nd (Z = 60), Sm (Z = 62), Eu (Z = 63), Gd (Z = 64), Ta (Z = 73), and W (Z = 74) among the 249 levels belonging to the ([Ne])3s23p63d10, 3s23p63d9nl, 3s23p53d10nl, 3s3p63d10nl (n = 4, 5; l = 0, 1, … , n − 1) configurations. Configuration interactions among these configurations have been included in the calculations. Collision strengths have been obtained at 20 scattered electron energies (5–20,000 eV) and they have been listed at six representative energies of 100, 400, 1000, 2500, 5000, and 10,000 eV in this work. Effective collision strengths have been obtained by assuming a Maxwellian electron velocity distribution at 24 temperatures ranging from 100 to 3000 eV. Our results are compared with those available in the literature. The relative difference is within 0.3% between our calculated energy levels and the corresponding experimental values wherever available. The energy levels are expected to be be accurate within 0.6%, while oscillator strengths and collision strengths for strong transitions are probably accurate to better than 20%. The complete dataset is available electronically from http://www.astronomy.csdb.cn/EIE/.  相似文献   

4.
Energies, E1, M1, E2, M2 transition rates, line strengths, oscillator strengths, and lifetimes from relativistic configuration interaction calculations are reported for the states of the (1s2)2s22p, 2s2p2, and 2p3 configurations in all boron-like ions between N III and Zn XXVI. Valence, core–valence, and core–core correlation effects were accounted for through single–double multireference (SD-MR) expansions to increasing sets of active orbitals.  相似文献   

5.
Based on relativistic wavefunctions from multiconfiguration Dirac–Hartree–Fock and configuration interaction calculations, E1, M1, E2, and M2 transition rates, weighted oscillator strengths, and lifetimes are evaluated for the states of the (1s2)2s22p3,2s2p4, and 2p5 configurations in all nitrogen-like ions between F  III and Kr  XXX. The wavefunction expansions include valence, core–valence, and core–core correlation effects through single–double multireference expansions to increasing sets of active orbitals. The computed energies agree very well with experimental values, with differences of only 300–600 cm−1 for the majority of the levels and ions in the sequence. Computed transitions rates are in close agreement with available data from MCHF-BP calculations by Tachiev and Froese Fischer [G.I. Tachiev, C. Froese Fischer, A&A 385 (2002) 716].  相似文献   

6.
Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (grasp) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (fac), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ∼98 Ryd), which mainly belong to the 3s23p5, 3s3p6, 3s23p43d, 3s23p33d2, 3s3p43d2, 3s23p23d3, and 3p63d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.  相似文献   

7.
The recent development of heavy ion sources capable of producing two-electron ions all the way up to U90+ makes possible many new experiments to measure relativistic and QED effects in the high Z regime. The calculation of energy levels for these ions is discussed, along with the exotic E1M1 two photon transition rate from the 1s2p 3P0 state. The E1M1 rate of 5.64 × 109 s?1 is about 46% of the allowed E1 decay rate.  相似文献   

8.
Energy levels, oscillator strengths, and electron impact collision strengths have been calculated for Ge-, Ga-, Zn-, Cu-, Ni-, and Co-like Au ions. For Ni-like Au, these atomic data are obtained among the levels belonging to the configurations of ([Ne])3s23p63d10, 3s23p63d9nl, 3s23p53d10nl, and 3s 3p63d10nl (n = 4, 5; l = 0, 1, … , n − 1). For other Au ions, more levels have been obtained with special attention to atomic data up to transitions of 5f → 3d for emission or 3d → 5f for absorption. Configuration interactions are taken into account for all levels included. Collision strengths have been obtained at 20 scattered electron energies (5-40,000 eV) and they are listed at six representative energies of 100, 500, 1000, 5000, 10,000, and 20,000 eV in this work. Effective collision strengths have been obtained by assuming a Maxwellian electron velocity distribution at 10 representative temperatures ranging from 500 to 5000 eV. The present dataset should be adequate for most applications. The energy levels are expected to be accurate to within 0.5%, while oscillator strengths and collision strengths for strong transitions are probably accurate to better than 20%. The complete dataset is available electronically from http://www.astronomy.csdb.cn/EIE/.  相似文献   

9.
Non-orthogonal orbitals in the multiconfiguration Hartree-Fock approach are used to calculate line strengths, oscillator strengths and transition probabilities for E1 transitions among the fine-structure levels of the 3s23p3, 3s3p4, 3s23p23d, 3s3p33d, 3p5 and 3s23p3d2 configurations in Fe XII and 3s23p, 3s3p2, 3s23d, 3p3, 3s3p3d, 3p23d, 3s3d2, 3p3d2, 3s24s, 3s24p, 3s3p4s and 3s24d configurations in Fe XIV. The lifetimes of excited levels belonging to these configurations of Fe XII and Fe XIV are also presented. An accurate representation of the levels has been obtained using spectroscopic and correlation radial functions. The wavefunctions exhibit large correlations and significant dependence of one-electron valence orbitals due to both the total and intermediate terms. The relativistic corrections are included through the one-body and two-body operators in the Breit-Pauli Hamiltonian. Progressively larger calculations are performed to check for important electron correlation contributions and for convergence of results. The atomic wavefunctions give excitation energies which are in close agreement with experiment. The present oscillator strengths and transition probabilities compare very well with previous large scale calculations.  相似文献   

10.
Collision strengths and electric-dipole line strengths have been calculated for all fine-structure transitions among the levels of the 1s22s22p, 1s22s2p2, and 1s22p3 configurations in 17 boron-like ions with nuclear charge number Z in the range 10 ⩽ Z ⩽ 74. From these results the collision strengths and line strengths for transitions between energy terms and their analogs in jj coupling can also be obtained. The collision strength data cover impact-electron energies ⩽ 3.25Z2Ry or 44.2Z2eV. The effects of configuration mixing, parentage mixing, and intermediate coupling have been included in the calculations. The method used in calculating the collision strengths is a Coulomb-Born-Exchange method well suited for treating many members of an isoelectronic sequence simultaneously. The complete results have been given in terms of fits to simple functions of the impact-electron energy that are readily integrated over a Maxwellian distribution to obtain collision rates. Some discussion is given of important differences between the present method and the more usual Coulomb-Born-Exchange method, where it is assumed that the free electron sees the screened nuclear charge (Z - N).  相似文献   

11.
Wavelengths and transition probabilities have been calculated for the 4s24p2-4s4p3 and 4s24p2-4s24p4d allowed transitions and for the forbidden (M1 and E2) transitions occurring within the ground configuration (4s24p2) in the heavy Ge-like ions with Z = 70-92. The fully relativistic multiconfiguration Dirac-Fock method taking into account both the correlations within the n = 4 complex and the QED effects has been used for the calculations. The present results are compared to and agree well with recent electron-beam ion-trap measurements in tungsten, osmium, gold, bismuth, thorium, and uranium.  相似文献   

12.
Weighted oscillator strengths, energy levels, and wavelengths are calculated for the 2s22p5-2s2p6, 2s22p5-222p43s, and 2s22p5-2s22p43d transition arrays for F-like ions in the isoelectronic sequence from Mg IV to Ni XX and in addition for n = 3?3 and other transitions in Mg IV, Al V, and Si VI. The calculation involves the computation of ab initio values of Slater radial energy integrals using a Hartree-Fock-Relativistic computer program package, which includes configuration-interaction and applies the Blume-Watson method for spin-orbit integrals. Some of the parameters are subsequently optimized on the basis of empirical data. Adopted values are tabulated along with atomic energy level compositions.  相似文献   

13.
The energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for Xe XXVII. The data refer to 107 fine-structure levels belonging to the configurations (1s22s22p6)3s23p63d10, 3s23p63d94l, 3s23p53d104l and 3s3p63d104l (l = s, p, d, f). The collision strengths are calculated with a grid of 20 collision energies between 10 and 1500 eV in terms of the energy of the scattered electron, by using the distorted-wave approximation. Effective collision strengths are obtained at six temperatures, Te (eV) = 10, 100, 300, 500, 800 and 1500, by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like Xe X-ray laser.  相似文献   

14.
We present accurate oscillator strengths, line strengths and radiative rates for 1073 E1 transitions among the 86 levels belonging to 2s22p4, 2s2p5, 2p6, and 2s22p3(4So, 2Do, 2Po)3? configurations in Mg V. We have used 1s and 2s Hartree-Fock orbitals, re-optimized 2p on 2p3(2Do)3s 3Do and optimized 3s,3p,3d orbitals on real states. Sixteen additional orbitals up to 8d are optimized either as a correction to n = 3 physical orbitals or as a correlation orbital. A very large set of configurations including up to three electron promotions are used to account for all important correlation effects. All of the main five terms in the Breit-Pauli operator (except the orbit-orbit interaction) are included in order to account for the relativistic effects. Small adjustments to the diagonal elements of the Hamiltonian matrix are made to bring the calculated energies within a few cm−1 of the corresponding NIST recommended data wherever available. The calculated oscillator strengths, line strengths, and radiative rates for almost all of the E1 transitions show excellent agreement with the corresponding MCDF results of Fischer. The recent results of Bhatia et al. are found to be consistently higher by 20-45%. The accuracy of the present calculation is considered to be better than the NIST accuracy ratings for various transitions.  相似文献   

15.
Energy levels and radiative rates are reported for transitions in Br-like tungsten, W XL, calculated with the general-purpose relativistic atomic structure package (grasp). Configuration interaction (CI) has been included among 46 configurations (generating 4215 levels) over a wide energy range up to 213 Ryd. However, for conciseness results are only listed for the lowest 360 levels (with energies up to ∼43 Ryd), which mainly belong to the 4s24p5,4s24p44d,4s24p44f,4s4p6,4p64d,4s4p54d,4s24p34d2, and 4s24p34d4f configurations, and provided for four types of transitions, E1, E2, M1, and M2. Comparisons are made with existing (but limited) results. However, to fully assess the accuracy of our data, analogous calculations have been performed with the flexible atomic code, including an even larger CI than in grasp. Our energy levels are estimated to be accurate to better than 0.02 Ryd, whereas results for radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.  相似文献   

16.
The fully relativistic configuration interaction method of the FAC code is used to calculate atomic data for multipole transitions in Mg-like Au (Au67+) and Al-like Au (Au66+) ions. Generated atomic data are important in the modeling of M-shell spectra for heavy Au ions and Au plasma diagnostics. Energy levels, oscillator strengths and transition rates are calculated for electric-dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) for transitions between excited and ground states 3l−nl3lnl, such that n=4,5,6,7n=4,5,6,7. The local central potential is derived using the Dirac–Fock–Slater method. Correlation effects to all orders are considered by the configuration interaction expansion. All relativistic effects are included in the calculations. Calculated energy levels are compared against published values that were calculated using the multi-reference many body perturbation theory, which includes higher order QED effects. Favorable agreement was observed, with less than 0.15% difference.  相似文献   

17.
Energy levels, transition probabilities, oscillator strengths, line strengths, and lifetimes have been calculated for Oxygen-like Gallium, Ga XXIV. The configurations 2s22p4, 2s2p5, 2p6, 2s2p43?, 2s22p33?, and 2p53? were used in calculations and 226 fine-structure levels were obtained. The fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 226 levels of Ga XXIV, belonging to the n≤3 configurations. Comparisons have been made with earlier available theoretical and experimental results.  相似文献   

18.
Weighted oscillator strengths, weighted radiative rates, and line strengths for all the E1 transitions between 285 fine-structure levels belonging to the 3d6, 3d54s, and 3d54p configurations of Fe III are presented, in ascending order of wavelength. Calculations have been undertaken using the general configuration interaction (CI) code CIV3. The large configuration set is constructed by allowing single and double replacements from any of 3d6, 3d54s, 3d54p, and 3d54d configurations to nl orbitals with n?5,l?3 as well as 6p. Additional selective promotions from 3s and 3p subshells are also included in the CI expansions to incorporate the important correlation effects in the n=3 shell. Results of some strong transitions between levels of 3d6, 3d54s, and 3d54p configurations are also presented and compared with other available calculations. It is found that large disagreements occur in many transitions among the existing calculations.  相似文献   

19.
Energy levels, wavelengths, transition probabilities, and oscillator strengths have been calculated for Ge-like Kr, Mo, Sn, and Xe ions among the fine-structure levels of terms belonging to the ([Ar] 3d10)4s24p2, ([Ar] 3d10)4s 4p3, ([Ar] 3d10)4s24p 4d, and ([Ar] 3d10)4p4 configurations. The fully relativistic multiconfiguration Dirac-Fock method, taking both correlations within the n=4 complex and the quantum electrodynamic effects into account, have been used in the calculations. The results are compared with the available experimental and other theoretical results.  相似文献   

20.
Energy levels, line strengths, oscillator strengths, radiative decay rates, and fine-structure collision strengths are presented for the Zn-like ions Nb XII and Mo XIII. The atomic data are calculated with the AUTOSTRUCTURE code, where relativistic corrections are introduced according to the Breit–Pauli distorted wave approach. We present the calculations of atomic data for 110 fine-structure levels generated from fifteen configurations (1s22s22p63s23p63d10)4s2, 4s4p, 4p2, 4s4d, 4s4f, 4s5s, 4p4d, 4s5p, 4s5d, 4p4f, 4p5s, 4d2, 4d4f, 4f2, and 3d94s24p. Fine-structure collision strengths for transitions from the ground and the first four excited levels are presented at six electron energies (20, 50, 80, 110, 150, and 180 Ryd). Our atomic structure data are compared with the available experimental and theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号