首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A partially encased composite I-girder with flat or corrugated web has been proposed to improve the structural performance of continuous composite girder under hogging moment. The flexural behavior of such structure under two points symmetric loading has been experimentally and analytically investigated. Static flexural loading tests showed that the partially encased girder improved bending strength in comparison to steel I-girder, as local bucking of steel flange was restricted by encased concrete. Especially for the corrugated web girder, the ultimate bending strength was improved about 20%, and the ductility also increased about 3 times. In addition, the limitation of width-to-thickness ratios for steel and concrete-encased composite I-girders with corrugated web were suggested to prevent premature failure due to local buckling of compressive flange. Moreover, the analytical methods of flexural strength under service and ultimate state for partially encased composite girder were proposed and verified with experimental results. It was found that the analytical bending strengths agreed well with the experimental ones at both service and ultimate state, which means the proposed analytical equations can be applied in predicting flexural strength accurately for such encased composite girder with flat or corrugated web.  相似文献   

2.
This paper describes a series of new compression and bending tests carried out on concrete filled steel tubes (CFST) after exposure to the ISO-834 standard fire. A theoretical model that has been previously developed is used to predict the post-fire load versus deformation relationships of CFST stub columns and beams. The predicted curves of load versus deformation are in good agreement with the new test results.The previously developed theoretical model had been used to investigate the influence of a number of important parameters on the residual ultimate strength and flexural stiffness of the composite sections and the results of the parametric studies were used to develop formulas for calculating the composite section residual ultimate strength under axial compression or flexural bending and the composite section residual flexural bending stiffness. In these formulas, the ambient temperature compression resistance, bending moment capacity and initial flexural bending stiffness of the composite section should be calculated using an existing design code. In this paper, these formulas are applied to the new test data to assess the suitability of using several different design codes: AIJ-1997, AISC-LRFD-1999, BS5400-1979, DBJ13-51-2003 and EC4-1994.  相似文献   

3.
Negative bending moments acting on the support regions of continuous composite girders generate tensile stresses in the concrete slab and compressive stresses in the lower steel profile. As a result, the mechanical behaviour of these girders becomes strongly nonlinear, which needs special study. In this paper, static experimental tests on four half-scale models of steel and concrete composite girders with different shear connectors such as studs and Perfo-Bond Strips (PBLs) under hogging moments are cautiously conducted in order to investigate the reduction of flexural stiffness and the inelastic behaviour after cracking. In the test results, crack development, crack widths and strains of the composite section before and after cracking were observed. The crack width evaluation methods based on design codes for steel and concrete composite girders under negative bending moment were compared. Crack widths should be controlled appropriately within an allowable value in the slab under service load. The strains in reinforcing bars obtained through the static tests agreed well with the values calculated through the application of the existing tension stiffening theory. The test specimens could be assumed to be a full composite section until the ultimate state on the basis of load and slip relationship results of shear connectors. It follows that analytical and experimental studies can be served as a basis for the design of continuous composite bridges.  相似文献   

4.
This paper highlights the structural performance of steel–concrete composite girders strengthened using advanced composite laminates. Nonlinear 3-D finite element models have been developed to investigate the flexural behaviour and load carrying capacity of the girders. The composite laminates comprised carbon fibre reinforced polymer (CFRP) plates and sheets as well as steel reinforced polymer (SRP) sheets. The elastic modulus and ultimate tensile strength of the laminates varied from low to high 60–300 GPa and 700–3100 MPa, respectively. The nonlinear material properties of the strengthened composite girder components comprising concrete, structural steel beam, reinforcement bars, adhesive and composite laminates were incorporated in the finite element model. The interfaces between the composite girder components were also considered allowing the contact and bond behaviour to be modelled and the different components to retain its profile during the deformation of the strengthened composite girder. Furthermore, the load-slip characteristic of headed stud shear connectors was incorporated in the finite element models based on previous experimental and numerical investigations conducted by the author. The finite element models have been validated against published tests on composite girders strengthened using different advanced composite laminates and having different cross-section geometries, lengths, layers of laminates with different elastic moduli and ultimate tensile strengths, concrete strengths and structural steel strengths. The load carrying capacity of strengthened composite girders, load–vertical displacement behaviour and failure modes were predicted from the finite element analyses and compared against test results. Parametric studies were conducted to study the effects on the load carrying capacity and structural behaviour of strengthened composite girders owing to the change in the composite laminate elastic modulus, number of laminate layers, concrete strengths and structural steel strengths. The study has shown that the increase in the load carrying capacity and ductility of strengthened composite girders due to the increase in steel beam strength is significant with high strength concrete slab. Also, it has been shown that the increase in concrete strength offers a considerable increase in the initial stiffness of strengthened composite girders, while the increase in structural steel strength offers a considerable increase in the stiffness of strengthened composite girder in the post-yielding stage.  相似文献   

5.
为了研究充填混凝土对窄幅钢箱-混凝土组合梁负弯矩区的荷载-挠度特征、截面应变分布、抗弯刚度、钢箱梁的约束机理以及承载能力的影响,对5根部分充填混凝土窄幅钢箱-混凝土简支组合梁试件和1根全充填混凝土试件进行了静力加载试验。试验结果表明:在负弯矩作用下,配筋率和剪力连接程度对窄幅钢箱-混凝土组合梁的受力性能影响显著,配筋率从1%增加到2%,承载力提高22%;剪力连接度从0.75增加到1.25,承载力提高13%。半充填和全充填混凝土对窄幅钢箱-混凝土组合梁试件的承载力和刚度影响很小。充填混凝土对钢箱梁的屈曲约束作用明显,所有试件最终破坏时均未发生内凹屈曲。由于充填混凝土有效地限制钢箱变形,从而提高了组合梁的承载力和结构的稳定性。基于简化塑性理论提出了部分充填混凝土窄幅钢箱-混凝土组合梁的承载力计算方法,且计算值与试验值吻合较好。  相似文献   

6.
A tubular flange girder is an I-shaped steel girder with either rectangular or round tubes as flanges. A tubular flange girder has a much larger torsional stiffness than a conventional I-shaped plate girder of similar weight, which results in a much larger lateral-torsional buckling strength. Finite element (FE) models of tubular flange girders with hollow tubes (HTFGs) are developed in this paper, considering material inelasticity, instability, initial geometric imperfections, and residual stresses. A parametric study is performed using the FE models to study the effects of stiffeners, geometric imperfections, residual stresses, cross section dimensions, and bending moment distribution on the lateral-torsional buckling flexural strength of HTFGs. These analytical results are used to evaluate formulas for determining the flexural strength of HTFGs.  相似文献   

7.
The estimation of the flexural stiffness and bending capacity of composite slim beams is rather complicated, because the influence of many factors should be taken into account. These factors include variable section dimensions, development of cracks and non-linear characteristics of concrete. This is especially true for the composite slim frame beam, in which the sagging moment region and the hogging moment region should both be considered. In this paper, experimental investigations have been conducted to investigate the flexural behavior of two specimens of composite slim frame beam with deep deck under monotonic loading. Based on the experimental results, formulas of calculating the bending capacity and flexural stiffness in the hogging moment region of the slim beam with deep deck has been proposed. Combining these formulas with existing formulas of sagging moment, formulas for the equivalent stiffness and the design method of the frame slim beam have been developed. The feasibility of the proposed formulas and design method has been verified by the test results.  相似文献   

8.
This paper describes an experimental investigation of the cyclic inelastic flexural behaviour of concrete-filled tubular (CFT) beams made of cold-formed circular hollow sections and filled with normal concrete. Cyclic bending tests were performed using a constant amplitude loading history on different CFT specimens with diameter-to-thickness ratios (D/t) ranging from 20 to 162. The CFT beams exhibited stable hysteresis behaviour up to the formation of plastic ripples and then showed considerable degradation in stiffness, strength, and ductility depending on the D/t ratio. Seismic capacity parameters are presented including strength, stiffness, rotation capacity, hysteresis loops and modes of failure of the specimens. Peak moments obtained in the cyclic tests are compared with those obtained previously in monotonic tests and also with design moments predicted using the available design rules for composite beams. The deformation ductility demand was determined and used to derive new fully ductile section slenderness limits suitable for seismic design.  相似文献   

9.
In the negative flexural region of continuous composite girder, cracking of concrete slab results in a reduction in the sectional stiffness and may affect the durability of reinforcement. Double composite action defined as attaching additional concrete to steel bottom flange to improve local buckling strength can be a way to increase the sectional stiffness. It has many advantages for construction while disadvantages also exist. In this case, two continuous composite girders, both of which had two 9 m long spans with 300 mm extension at each edge support and were 0.55 m high, were designed to study the mechanical properties in concrete crack, formation of sectional plastic hinge, load-carrying capacity, etc. One was a conventional composite girder named CCG and the other one was designed with double composite action in the negative flexural region named DCG. Moreover, evaluations of concrete crack width, based on different design codes, and cracking moment were compared with test results and agreed with each other. It indicated double composite action made concrete crack development slower in service load stage. The evaluation of sectional bending-carrying capacity of CCG in the negative flexural region based on the mechanical model with full plastic section of Euro Code 4 and an analogous method was found to evaluate that of DCG. The evaluation results coincided with test results proved the summation which can be drawn from test results.  相似文献   

10.
在采用栓钉等柔性剪力连接件的波形钢腹板组合梁中,由于波形钢腹板较大的剪切变形及双界面剪切滑移,平截面假定不再适用。为此,通过将波形钢腹板梁的弯曲分解为顶底板整体满足平截面假定的主弯曲和顶底板各自满足平截面假定的次弯曲,引入波形钢腹板的剪切变形协调条件和界面剪切滑移关系,推导了考虑波形钢腹板剪切变形及界面滑移的波形钢腹板梁弹性弯曲微分方程,利用给出的横隔板对次弯曲和滑移的约束边界条件,求得了简支波形钢腹板梁在不同荷载作用下的解析解,并采用有限元分析予以验证。在此基础上,分析了横隔板及滑移对梁体弯曲性能的影响。结果表明:横隔板约束对梁体变形影响很小,但会使其附近梁段顶底板出现应力集中;当界面剪切刚度系数大于0.9时,在高跨比1/20~1/10范围内,考虑滑移与不考虑滑移梁跨中挠度比小于1.05;界面剪切刚度系数越小,横隔板附近梁段顶底板应力集中越严重。  相似文献   

11.
Application of near-surface mounted (NSM) fibre reinforced polymer (FRP) bars is emerging as a promising technology for increasing flexural and shear strength of deficient reinforced concrete (RC) members. In order for this technique to perform effectively, the structural behaviour of RC elements strengthened with NSM FRP bars needs to be fully characterized. This paper focuses on the characterization of flexural behaviour of RC members strengthened with NSM glass-FRP bars. Totally, 10 beams were tested using symmetrical two-point loads test. The parameters examined under the beam tests were type of concretes (lightweight polystyrene aggregate concrete and normal concrete), type of reinforcing bars (GFRP and steel), and type of adhesives. Flexural performance of the tested beams including modes of failure, moment–deflection response and ultimate moment capacity are presented and discussed in this paper. Results of this investigation showed that beams with NSM GFRP bars showed a reduction in ultimate deflection and an improvement in flexural stiffness and bending capacity, depending on the PA content of the beams. In general, beams strengthened with NSM GFRP bars overall showed a significant increase in ultimate moment ranging from 23% to 53% over the corresponding beams without NSM GFRP bars. The influence of epoxy type was found conspicuously dominated the moment–deflection response up to the peak moment. Besides, the ultimate moment of concrete beams reinforced with GFRP bars could be predicted satisfactorily using the equation provided in ACI 318-95 Building Code.  相似文献   

12.
钢管混凝土组合桁梁由钢管混凝土桁架和混凝土板组成,其在承受正弯矩时可充分发挥混凝土板与桁架的组合作用。为对这种结构的受弯受力性能进行研究,提出了基于铰接桁架的分析方法,以不带竖腹杆的warren型钢管混凝土组合桁梁为例,推导了在节点单点荷载以及两点对称荷载作用下简支组合桁梁各个构件的效率系数。通过不同构件之间的效率系数进行对比,得到了组合桁梁的破坏模式判定以及受弯承载力简化计算方法。同时通过引入腹杆抗力折减系数,将节点承载力对组合桁梁受弯承载力的影响也考虑在内。将公式计算结果与既有文献中的钢管混凝土组合桁梁、桁架试件试验结果进行了对比,破坏模式和受弯承载力均吻合良好,所选全部33榀试件的计算值与实测值的相对误差为1.27%,标准差为0.128。结果表明,该简化计算方法建立了节点与组合桁梁承载力之间的相互联系,能够快速、准确地对破坏模式及受弯承载力进行估算,可极大地简化设计流程。设计中应根据组合桁梁各构件的效率系数对其截面尺寸进行优化,确保不同破坏模式下的受弯承载力较为接近,同时避免由于节点或腹杆过早失效导致组合桁梁发生剪切破坏。  相似文献   

13.
This paper presents the modeling of pultruded glass fiber reinforced polymer (GFRP) box girders consisting of built-up hat-shape sections and flat plates. The study addresses the effect of a thin concrete deck adhesively bonded to the top GFRP plate on flexural performance, as well as the behavior under positive and negative bending that simulates continuous girders. A three-dimensional finite element (FE) approach is proposed to predict the behavior of the GFRP system, including experimental validation. The efficacy of the girders is compared with other metallic box girders: carbon steel and corrosion-resistant metals, namely, stainless steel and aluminum. Failure is generally due to debonding of the concrete deck, and as such, the ultimate strength is not affected much by the girder material used. The study examines the single girder behavior as well as girder-group systems, to assess load distribution. It is shown that the AASHTO LRFD approach for load distribution can reasonably be used for the proposed girder systems. Design recommendations as to material selection are addressed to better use the girder system.  相似文献   

14.
为研究分散型钢混凝土组合柱(ISRCC)的抗震性能,分析组合柱中分散布置的型钢和混凝土之间的协同工作情况,对4个ISRCC柱进行偏心率为10%和15%的低周往复加载试验。与传统低周往复加载试验相比,试验中按预定路径同时施加竖向荷载和水平荷载。分析了ISRCC柱在低周往复荷载作用下的承载力、延性、破坏形态、裂缝分布和刚度退化等。试验结果表明:所有ISRCC柱均为小偏心压弯破坏,试件整体性较好;在偏心率15%以内,屈服荷载前各试件满足平截面假定,能够有效发挥型钢和混凝土的组合作用;ISRCC柱压弯承载力的试验值与ACI 318-2014、EN 1994-1-1和YB 9082-2006《钢骨混凝土结构技术规程》等规范中的承载力计算结果吻合较好,验证了现有规范中普通钢骨混凝土(SRC)柱压弯承载力的计算方法对偏心率15%以内的ISRCC柱的适用性;试件的极限位移角为1/88~1/65,满足我国规范对罕遇地震作用下框架-核心筒结构弹塑性层间位移角的要求,具有较好的变形能力。  相似文献   

15.
通过复式薄壁方钢管混凝土构件受弯性能的试验研究,分析了内置圆形截面空钢管和钢管高强混凝土对薄壁方钢管混凝土构件纯弯段受弯性能的影响。试验表明:内置圆形截面空钢管和钢管高强混凝土可有效提高构件的受弯承载力,内置钢管高强混凝土的提高效果更显著;薄壁方钢管混凝土的受弯承载力和抗弯刚度明显较对比空钢管的高;试验过程中未出现钢管角部破坏的情况。对复式薄壁方钢管混凝土纯弯构件受力性能进行有限元分析,分析结果和试验结果吻合较好,外管的约束作用有效提高了夹层混凝土转角处混凝土的抗压强度。有限元参数分析结果表明,构件的受弯承载力和抗弯刚度随着夹层混凝土强度和径宽比的增大而增大,但随着径厚比的增大而减小;同时构件的受弯承载力随着钢管强度的增大而增大。建议了复式实心薄壁方钢管混凝土构件和复式空心薄壁方钢管混凝土构件受弯承载力的简化计算模型,其计算结果精度较高。  相似文献   

16.
在截面纵向位移函数中引入截面轴向位移,以描述压弯作用下Π形梁截面的变形状态。基于能量变分法导出轴向位移、竖向位移和剪力滞位移之间相互耦合的控制微分方程组,求得压弯作用下Π形梁的位移解及其相应的边界条件。结合ANSYS软件,利用实体单元和导出的位移解及其边界条件分别对简支梁和悬臂梁进行分析,验证其有效性和可靠性。结果表明:剪力滞效应使得Π形梁中性轴和形心轴相互分离,截面不再绕形心轴转动;在弯曲作用下,剪力滞使简支梁截面弯曲刚度减小,悬臂梁固定端一侧1/4跨度内截面弯曲刚度减小,悬臂梁自由端一侧3/4跨度内截面弯曲刚度增加;在压弯作用下,轴向压力引起的剪力滞使简支梁梁端附近截面弯曲刚度减小,悬臂梁自由端一侧截面弯曲刚度增加。  相似文献   

17.
对铝合金方形和矩形管截面开孔试件进行了受弯性能试验研究,试验共计13个试件,分别进行了三点弯曲试验和四点弯曲试验;试验材料分别为国产6061-T6和6063-T5铝合金挤压型材,主要对试件的破坏模式、抗弯承载力、弯矩 曲率曲线和应变分布曲线进行了研究,探讨了铝合金方形和矩形管截面梁在2种受弯状态下孔洞参数对受弯性能的影响。结果表明:试验中所有试件都发生了受压局部屈曲破坏;对于方形管截面梁,在2种受弯状态下,当孔洞的径高比为0.3时,孔洞对试件的抗弯承载力影响较小,当孔洞的径高比为0.6时,孔洞对试件的抗弯承载力有很大程度的影响;对于矩形管截面梁,在三点弯曲状态下,随着孔洞数目的增加,试件的抗弯承载力有很大程度的降低,在四点弯曲状态下,开孔数目对抗弯承载力影响较小;方形管截面梁在2种弯曲状态下的承载力相差较小,而矩形管截面梁在三点弯曲状态下的抗弯承载力比四点弯曲状态下的抗弯承载力有明显提高。  相似文献   

18.
通过对3块预应力混凝土叠合板(PK板)试件的抗弯试验,验证其抗弯承载能力和变形性能.试验发现,PK板破坏前有明显预兆,属延性破坏;板跨的增加会降低PK板的开裂荷载和极限承载力,而预应力筋配筋率的增加则会提高板的抗弯刚度和承载力;实测开裂荷载和极限承载力远高于设计值,完全满足工程要求.本试验为PK板在钢结构住宅中的应用提...  相似文献   

19.
在许多国家,预应力混凝土箱梁被认为是中等跨径(30~50m)混凝土梁最有效的结构形式。但是当混凝土梁的单跨长度超过50m时,相对钢梁,混凝土箱梁自重问题成为其最大约束。因此,在韩国,中等跨径桥梁主要采用钢箱梁。在20世纪,研究者们多次尝试提高预应力混凝土箱梁结构的有效性,最终采用混凝土-钢混合梁以减轻结构自重。但是,混合桥采用不同类型钢腹板及不同连接形式,会引起结构安全性能和使用性能的变化。为了全面了解钢腹板梁及钢腹板连接形式的性能,对5根带腹板的预应力混凝土梁进行静力荷载试验。这5根试件中,有2根混合梁采用波形钢腹板,而另3根采用桁架式钢腹板。结果显示:通过加强钢腹板与预应力筋的连接节点,可以改善使用性能相关问题(开裂荷载和挠度)及安全性能相关问题(刚度和极限承载力)。  相似文献   

20.
This paper presents an evaluation of the structural performance of tetragonal lattice girders for NATM tunnel construction. H-shaped steel ribs and triangular lattice girders have been widely used as a temporary support for NATM tunneling. H steel ribs have high flexural stiffness and strength, but they may induce unexpected internal gaps after shotcreting, because of their geometric characteristics. To overcome the problem, triangular lattice girders were developed. However, the lattice girder revealed frequent local failure at the joints of each bar. Moreover, those two supports show the quite low connection strength of members. Recently, a new type support, the tetragonal lattice girder, was developed to overcome the weaknesses of former supports. In this study, the structural performance of the new type support was studied by analytical and experimental methods. For the evaluation, 4-point flexural analysis, the conventional evaluation method, and arch analysis including stability analysis were performed. In addition, a 4-point flexural experiment was performed to evaluate the ultimate load carrying capacity, and observe whether local failure occurs or not. In the experimental study, a connected model was also considered as well as a unit model, in order to check the rationality of the connection method of the girder. All analytical and experimental results were compared with the structural performance of former supports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号