首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High quality Tl2Ba2CaCu2O8 (Tl-2212) superconducting thin films are prepared on both sides of 2 in. LaAlO3(0 0 1) substrates by off-axis magnetron sputtering and post-annealing process. XRD measurements show that these films possess pure Tl-2212 phase with C-axis perpendicular to the substrate surface. The thickness unhomogeneity of the whole film on the 2 in. wafer is less than 5%. The superconducting transition temperatures Tcs of the films are around 105 K. At zero applied magnetic field, the critical current densities Jcs of the films on both sides of the wafer were measured to be above 2 × 106 A/cm2 at 77 K. The microwave surface resistance Rs of film was as low as 350 μΩ at 10 GHz and 77 K. In order to test the suitability of Tl-2212 thin films for passive microwave devices, 3-pole bandpass filters have been fabricated from double-sided Tl-2212 films on LaAlO3 substrates.  相似文献   

2.
Superconducting films of the high-T c compound Bi2Sr2CaCu2O8+y , have been grown on (111)-oriented gadolinium gallium garnet substrates by a liquid-phase technique. The films show a very high degree of preferential orientation with thec-axis perpendicular to the substrates. The onset of the resistive transition was 85 K while zero resistance was obtained at 78 K. Results concerning the critical current properties of the films are described. Measurements of the paraconductivity effects on the electrical resistivity above the superconducting transition due to thermodynamic fluctuations are also reported.Supported by Ansaldo S.p.A Divisione Ansaldo Ricerche, Via Corso Perrone 25, I-16100 Genova, Italy.  相似文献   

3.
The surface resistanceR s of Tl2Ba2CaCu2O8 films fabricated on LaAlO3 wafers up to 3 inches (7.6 cm) in diameter through a post-deposition anneal process was measured over the frequency range 5.55–94.1 GHz by the following techniques: 5.55 and 27.5 GHz high-temperature superconductor (HTS)-sapphire resonators, 10 GHz parallel plate resonator, and 94.1 GHz scanning confocal resonator.R s was found to exhibit a quadratic dependence on frequencyf at 77 K:R s f 2.0±0.1. The highest-quality films yieldR s =145±15 at 10 GHz and 77 K. Scanning confocal resonator mapping ofR s across a 2-inch (5.1 cm) diameter wafer yielded a base value forR s of 16±1 m at 77 K and 94.1 GHz (equivalent to 180±10 at 10 GHz) and good uniformity inR s across the wafer. HTS-sapphire resonator measurements ofR s for fifteen 1.2 cm square parts cut from a 3-inch diameter wafer yieldedR s values scaled to 10 GHz of 196±10 at 80 K. Similar values were measured for Tl2Ba2CaCu2O8 films prepared on both sides of a 2-inch diameter wafer.Rs values at 10 GHz and 80 K of 147–214 were maintained over the course of 40 independent and successive deposition runs and corresponding anneals under nominally identical film fabrication conditions. Surface resistance at 5.55 GHz remained below 80 for maximum rf magnetic fields up to 85 Oe at 4.2 K and 7 Oe at 80 K, respectively. Results are compared with predictions of the two-fluid model. The relative advantages and disadvantages of the different techniques for measuring surface resistance are discussed.  相似文献   

4.
Investigations on flux dynamics of ring-shaped T12Ba2CaCu2O8 superconducting thin films have been carried out by measuring the temperature dependent magnetization M(T) during field-cooling (FC) and zero-field-cooling (ZFC) processes. For a given magnetic field, from the magnetization behavior two distinct temperatures, Tkink and Tirr, can be defined. Below Tkink, a clear hysteretic behavior of M(T) is observed leading to a large irreversible signal M = MFC – MZFC. Above Tkink, this irreversible signal, though being very small, is still non-zero until it eventually vanishes at a higher temperature Tirr. Above Tirr, both curves MFC(T) and MZFC(T) merge together and become temperature independent. We attribute the first region ( T< Tkink) to a 3D vortex-glass phase, the second region (Tkink < T < Tirr) to a vortex line liquid state and the third region (Tirr < T < Tc) to a pancake liquid state.  相似文献   

5.
By means of X-ray diffraction (XRD), neutron diffraction spectra (NDS), electron probe microanalysis (EMPA), and X-ray photo electron spectroscopy (XPS) etc., we studied the superconductivity of doped-Pb Hg-1223 compound. The crystal parameters a and c and the unit cell volume of the Pb-doped sample do not change considerably, but the intercalated O(4) of the sample increases more than that of the pure-phase Hg-1223. As for the valence number of Hg is still 2 and that of Pb is either 2 or 4, the bond length of Cu(2)–O(3) increases, Raman frequency of the AIg mode of the apical O(3) increases, the bond angle of O(2)–Cu(2)–O(2) is smaller and the hole density is approximately uniformly shared between the three CuO2 planes. The above have been affirmed by our experiment data and calculations based on Bond Valence Sums (BVS). Thus, the enhancement in T c of the Pb doping effect is due to the variation of the electronic state and its distribution.  相似文献   

6.
Zinc niobium oxide (ZnNb2O6) thin films were grown on ITO/glass substrate by sol-gel process. Microstructure and surface morphology of the ZnNb2O6 thin films have been studied by X-ray diffraction and scanning electron microscopy. Optical properties of the ZnNb2O6 thin films were obtained by UV-visible recording spectrophotometer. The dependence of the microstructure, optical transmittance spectra, optical band gap on annealing temperature was also investigated.  相似文献   

7.
From structural analysis we have shown in a previous investigation that the series TlBa2Ca n Cu n+1O2n+5 and Tl2Ba2Ca n Cu n+1O2n+6 are composed of superconductor-semiconductor arrays. In this paper, we demonstrate that the unit cell of the Tl2Ba2Ca n Cu n+1O2n+6 series can further be viewed as composed of a composite block of superconductor-metal-semiconductor, where TlBa2CuO5 is the fundamental superconductor, TlO the metallic unit, and CaCuO2 the semiconductor block. It is indicated that theT c of Tl(2201) can be deduced from that of Tl(1201) based on Kresin's model of composite systems.  相似文献   

8.
We show that the average lattice disorder in YBa2Cu3O6.9 films grown by ion-beam sputtering is homogeneous and can be quantified by introducing the lattice coherence lengthr c that is extracted from the width of X-ray diffraction rocking curves. The superconducting properties of the films are correlated withr c T c decreases with increasing disorder forT c 10 nm, while the width of the resistive transition and the normal-state resistivity increase.  相似文献   

9.
We report the structural and optical properties of nanocrystalline thin films of vanadium oxide prepared via evaporation technique on amorphous glass substrates. The crystallinity of the films was studied using X-ray diffraction and surface morphology of the films was studied using scanning electron microscopy and atomic force microscopy. Deposition temperature was found to have a great impact on the optical and structural properties of these films. The films deposited at room temperature show homogeneous, uniform and smooth texture but were amorphous in nature. These films remain amorphous even after postannealing at 300 °C. On the other hand the films deposited at substrate temperature TS > 200 °C were well textured and c-axis oriented with good crystalline properties. Moreover colour of the films changes from pale yellow to light brown to black corresponding to deposition at room temperature, 300 °C and 500 °C respectively. The investigation revealed that nanocrystalline V2O5 films with preferred 001 orientation and with crystalline size of 17.67 nm can be grown with a layered structure onto amorphous glass substrates at temperature as low as 300 °C. The photograph of V2O5 films deposited at room temperature taken by scanning electron microscopy shows regular dot like features of nm size.  相似文献   

10.
Epitaxial thin films of SnFe2O4 are deposited on sapphire substrate by ablating the sintered SnFe2O4 target with a KrF excimer laser (λ = 248 nm and pulsed duration of 20 ns). X-ray diffraction study reveals that SnFe2O4 films are epitaxial along (222) direction. The optical bandgap of SnFe2O4 film is estimated using transmittance vs. wavelength data and is observed to be 2.71 eV. The presence of hysteresis loop at room temperature in magnetization vs. field plot indicates the ferromagnetic behavior of the film. It is observed that the coercive field and remnant magnetization decrease with increase in temperature.  相似文献   

11.
The growth, structure and room temperature electrical conductivity of electron beam evaporated V2O5 thin films were studied in detail as a function of deposition temperature. The films deposited at Ts≈553 K and subsequently annealed in oxygen atmosphere at 693 K exhibited orthorhombic layered structure.  相似文献   

12.
S. Yildirim  D. Deger  I. Turhan 《Vacuum》2005,77(3):329-335
The dielectric constant and the dielectric loss of tantalum pentoxide (Ta2O5) thin films, produced by sol-gel spin-coated process on Corning glass substrates, have been investigated in the frequency range of 20-105 Hz and the temperature range of 183-403 K, using ohmic Al electrodes. The frequency and temperature dependence of relaxation time has also been determined. The capacitance and loss factor were found to decrease with increasing frequency and increase with increasing temperature. The activation energy values were evaluated and a good agreement between the activation energy values obtained from capacitance and dielectric loss factor measurements were observed.  相似文献   

13.
Flux creep characteristics ofc-axis-oriented Bi2Sr2CaCu2O x thin films grown by the method of electron beam evaporation of stoichiometric target and subsequent annealing have been investigated in the absence of external magnetic field. A decrease of the pinning potential with decreasing temperature is obtained fromI–V curves. This result is explained by the presence of the spatially nonlinear pinning potential.  相似文献   

14.
The synthesis and characterization of the Ba2TiSi2O8 films are described. The Ba2TiSi2O8 crystal was obtained after heat treatment at above 630 °C of a sol-gel derived glassy material which has a chemical composition (mole ratio) 2BaO, TiO2, 2SiO2, and then the Ba2TiSi2O8 films were formed from the hydration of CaO-P2O5 glass powders. Heat treatment conditions and crystallization of the synthesized materials were studied by DSC-TG, XRD, and FT-IR. Second order nonlinear optical property has been verified by second harmonic generation test at 1064 nm. These results showed that the hydration process has a potential in rendering shape-comfortable optical materials.  相似文献   

15.
Photocatalytic properties of porous TiO2/Ag thin films   总被引:1,自引:0,他引:1  
In this study, nanocrystalline TiO2/Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO2/Ag thin films were prepared after calcination at a temperature of 500 °C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO2 films. The as-prepared TiO2 and TiO2/Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation.When PS spheres of different sizes were introduced after calcination, the as-prepared TiO2 films exhibited different porous structures. XRD results showed that all TiO2/Ag films exhibited a major anatase phase. The photodegradation of porous TiO2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure.  相似文献   

16.
以尖晶石结构ZnFe2O4材料为研究对象,以可溶性无机盐为原料,利用溶胶-凝胶技术在Al2O3基片上制备了ZnFe2O4薄膜,研究其对低浓度丙酮气体的敏感特性.通过DTA,TG,XRD及SEM分析手段对制膜过程及薄膜形态进行了表征.研究发现,采用柠檬酸作为络合剂的无机盐原料溶液-溶胶-凝胶(ISG)工艺,在700℃烧结温度下,可以得到覆盖良好、结构均匀、晶粒尺寸约在100nm的尖晶石结构ZnFe2O4薄膜.通过该薄膜对丙酮气敏特性测试表明,ZnFe2O4材料对丙酮具有较好的敏感性,在550℃的操作温度下,材料对丙酮气体敏灵敏度为8,响应与恢复时间小于5s.  相似文献   

17.
RuO2-CeO2 composite thin films are deposited on various Si substrates by a radiofrequency magnetron sputtering technique. Compacted polycrystalline pellets of the nanostructured CeO2-RuO2 composite system are used as standard samples for comparative electrical analyses. All films and composite samples are analyzed by X-ray diffraction and transmission electron microscopy. Electrical measurements of radiofrequency sputtering of thin films are performed as a function of the RuO2 fraction and of the temperature (between 25 and 400 °C). A nonlinear variation in the electrical conductivity of the RuO2-CeO2 composite thin films as a function of the RuO2 volume fraction (Φ) is observed and discussed. It is interpreted in terms of a power law (in (Φ − Φc)m ), where m and Φc are parameters characteristic of the distribution of the conducting phase in a composite medium.  相似文献   

18.
We have measured point contacts with a gold tip on Bi2Sr2CaCu2O8+y thin films and Bi2Sr2CaCu2O8+y/SrTiO3 double layers. The results show tunneling or direct conductivity behaviour depending on the junction parameters and can be fitted by corresponding theoretical models. From fitting procedure of differential characteristics by modified Blonder-Tinkham-Klapwijk (BTK) theory the Fermi velocity vF=5×105 m/s, ratio 2(4.2K)/kTc=7.9 and coherence length ab=3.5 nm were obtained. The changing of the interface transmission by additional layers of different thickness corresponding to metallic or insulating behaviour is shown. In the frame of the inelastic scattering of quasiparticles the linear background of differential conductance is discussed.This work was supported by German BMFT under Contract No.l3N5924A and Slovak Grant Agency for Sciences (Grants Nos. 2/990125/93 and 2/999185/92).  相似文献   

19.
Yttrium oxide (Y2O3) thin films were grown onto Si(1 0 0) substrates using reactive magnetron sputter-deposition at temperatures ranging from room temperature (RT) to 500 °C. The effect of growth temperature (Ts) on the growth behavior, microstructure and optical properties of Y2O3 films was investigated. The structural studies employing reflection high-energy electron diffraction RHEED indicate that the films grown at room temperature (RT) are amorphous while the films grown at Ts = 300-500 °C are nanocrystalline and crystallize in cubic structure. Grain-size (L) increases from ∼15 to 40 nm with increasing Ts. Spectroscopic ellipsometry measurements indicate that the size-effects and ultra-microstructure were significant on the optical constants and their dispersion profiles of Y2O3 films. A significant enhancement in the index of refraction (n) (from 2.03 to 2.25) is observed in well-defined Y2O3 nanocrystalline films compared to that of amorphous Y2O3. The observed changes in the optical constants were explained on the basis of increased packing density and crystallinity of the films with increasing Ts. The spectrophotometry analysis indicates the direct nature of the band gap (Eg) in Y2O3 films. Eg values vary in the range of 5.91-6.15 eV for Y2O3 films grown in the range of RT-500 °C, where the lower Eg values for films grown at lower temperature is attributed to incomplete oxidation and formation of chemical defects. A direct, linear relationship between microstructure and optical parameters found for Y2O3 films suggest that tuning optical properties for desired applications can be achieved by controlling the size and structure at the nanoscale dimensions.  相似文献   

20.
A.M. Farid  H.E. Atyia  N.A. Hegab 《Vacuum》2005,80(4):284-294
Sb2Te3 films of different thicknesses, in the thickness range 300-620 nm, were prepared by thermal evaporation. X-ray analysis showed that the as-deposited Sb2Te3 films are amorphous while the source powder and annealed films showed a polycrystalline nature. The AC conductivity and dielectric properties of Sb2Te3 films have been investigated in the frequency range 0.4-100 kHz and temperature range 303-373 K. The AC conductivity σAC(ω) was found to obey the power law ωs where s?1 independent of film thickness. The temperature dependence of both AC conductivity and the exponent s can be reasonably well interpreted by the correlated barrier hopping (CBH) model. The experimental results of the dielectric constant ε1 and the dielectric loss ε2 are frequency and temperature dependent and thickness independent. The maximum barrier height WM calculated from dielectric measurements according to the Guintini equation agrees with that proposed by the theory of hopping of charge carriers over a potential barrier as suggested by Elliott for chalcogenide glasses. The effect of annealing at different temperatures on the AC conductivity and dielectric properties was also investigated. Values of σAC, ε1 and ε2 were found to increase with annealing treatment due to the increase of the degree of ordering of the investigated films. The Cole-Cole plots for the as-deposited and annealed Sb2Te3 films have been used to determined the molecular relaxation time τ. The temperature dependence of τ indicates a thermally activated process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号