首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, water and three phase compositions of Solka-Floc, a cellulose fiber for simulating the biomass in bacteria, yeast, and fungal fermentation were studied in a 1.4?m3 stirred airlift reactor. The fractional dispersed phase holdup and the overall volumetric mass transfer coefficients were measured. The dispersed phase riser gas holdup and overall volumetric mass transfer coefficients both increased with increasing riser superficial dispersed phase velocity (0.02–0.1?ms?1) and agitator speed in the range of 0–5?rs?1. An increase in the Solka-Floc concentration (1–3% w/v) was found to reduce ?GR and K L a L . Empirical correlations have been developed for fractional dispersed phase gas holdup and overall volumetric mass transfer coefficients.  相似文献   

2.
In the present work, water and three phase compositions of Solka-Floc, a cellulose fiber for simulating the biomass in bacteria, yeast, and fungal fermentation were studied in a 1.4 m3 stirred airlift reactor. The fractional dispersed phase holdup and the overall volumetric mass transfer coefficients were measured. The dispersed phase riser gas holdup and overall volumetric mass transfer coefficients both increased with increasing riser superficial dispersed phase velocity (0.02-0.1 ms-1) and agitator speed in the range of 0-5 rs-1. An increase in the Solka-Floc concentration (1-3% w/v) was found to reduce εGR and KLaL. Empirical correlations have been developed for fractional dispersed phase gas holdup and overall volumetric mass transfer coefficients.  相似文献   

3.
The mass transfer performance of 5 cm diameter reciprocating plate column has been measured with the system n-butyric acid/kerosene (dispersed)/water (continuous). In most of the tests, the reciprocating plate stack was made of stainless steel which was preferentially wet by the continuous phase. During the mass transfer process the holdup and in some cases the Sauter mean droplet diameter were measured. The mass transfer effectiveness, expressed as the height of a transfer unit (Hax) corrected for axial mixing, depended on the phase flow rates, the agitation rate and the direction of mass transfer. For continuous to dispersed phase mass transfer (c → d), the mass transfer was more effective, i.e. Hax was lower than for d → c mass transfer under the same external conditions. Qualitative and quantitative observations indicated much larger drop sizes in the d → c case due to enhanced coalescence. Although mass transfer was less effective under d → c conditions, the column capacity was increased. The same effects were also observed when the plate stack was modified by inserting some Teflon plates which were partly wet by the dispersed phase.  相似文献   

4.
This work considers flooding and dispersed phase holdup, with and without mass transfer, in a 7.6?cm diameter reciprocating plate extraction column using the liquid system toluene-acetone-water. The present flooding data in respect to the absence of mass transfer were well correlated by the hydrodynamic model based on the dispersion of drops by turbulent energy dissipation. During mass transfer the flooding characteristics were found to be dependent on the direction of mass transfer.

Dispersed phase holdup data were obtained by two different measuring techniques. Local holdup was found to vary with column height, while the overall holdup depended on agitation speed, phase throughputs and mass transfer direction. The holdup data thus obtained are compared with data published for the case without mass transfer, and new correlations are presented.  相似文献   

5.
This paper reports a detailed study of the hydrodynamics involved in the operation of rotary disk contactors (RDC). New information is presented regarding the ‘critical rotor speed’ which divides the two hydrodynamic regimes of near constant and varying characteristic velocity of the dispersed droplet phase. Generalized correlations for prediction of characteristic velocity both above and below the critical rotor speed have been proposed under conditions of no solute transfer as well as solute transfer between the dispersed and continuous phases. Experimental data on mass transfer obtained in the two hydrodynamic regimes of RDC operation have also been correlated by the application of mass transport theory taking into account the factors affecting the interfacial area of contact, drop size, characteristic velocity and dispersed phase holdup.  相似文献   

6.
The steady state hydrodynamics of the holdup in a 15 cm column agree quite well with mechanistic predictions at conditions approaching flooding. In the presence of mass transfer (acetic acid from the dispersed kerosene phase to the continuous water phase), the holdup data below flooding are not well predicted by the model due to enhanced droplet coalescence. The prediction of holdup at flooding is a function of the ratio of the flow rates but is independent of the physicochemical properties of the extraction system, and therefore can be used to estimate the flooding holdup regardless of the occurrence of mass transfer. In the second part of the paper, steady state mass transfer characteristics of the column were also simulated using a mechanistic model. Despite the difficulty of estimating parameters such as the mass transfer coefficient, the model curves could be arbitrarily adjusted to fit observed exit concentrations. These steady state results provide useful insights on the non-linearity of the system from a control viewpoint.  相似文献   

7.
Effects of the continuous phase velocity (0.01-0.08 m/s(, the dispersed phase velocity (0.0-0.04 m/s) and particle size (1.0-3.0 mm) on the individual phase holdups and the mass transfer coefficient have been determined in two (liquid-liquid) and three (liquid-liquid-solid) phase fluidized beds.

In the beds, the dispersed phase holdup increased with dispersed phase velocity but it decreased with continuous phase velocity. Whereas the continuous phase holdup decreased with dispersed phase velocity but it increased with continuous phase velocity. The bed porosity increased with both the dispersed and continuous phase velocities in the beds of 1.7 and 3.0 mm particles. In addition, the continuous phase holdup decreased with the presence of solid particles in the bed, however, the dispersed phase holdup was not affected by the presence of the particles.

The overall mass transfer coefficients in the continuous and dispersed phases increased with increasing fluid velocities but it decreased with the bed height.

The continuous phase holdup and mass transfer coefficient data have been correlated with the operating variables and the dimensionless groups.  相似文献   

8.
The differential partitioning of α-La to the PEG-rich phase and β-Lg to the salt-rich phase was studied in the continuous extractor, rotating disc contactor (RDC), using polyethylene glycol (PEG) 1000–trisodium citrate system. The performance of the extractor was evaluated in terms of holdup, mass transfer coefficient, extraction efficiency, and recovery by studying the operating variables such as phase velocities and rotor speed. The process conditions for the maximum dispersed phase mass transfer coefficient and recovery of α-La was also obtained and reported.  相似文献   

9.
1引言采用机械搅拌的萃取塔已广泛地应用在石油和化学工业生产中。近年来,一些研究学者又开发了用气体进行搅拌的萃取过程[1~3],与机械搅拌相比,采用气体搅拌具有塔内无运动部件、操作稳定、结构简单、能耗低等特点,无疑给操作带来方便。如果在塔内装入静态混合...  相似文献   

10.
Dispersed phase holdup was measured in a pulsed plate column for the kerosene-water system under binary conditions and under solute transfer from dispersed to continuous and continuous to dispersed phases. The experimental data were satisfactorily modelled through a recirculation regime model. The drop size distribution, measured by a photographic technique, exhibited a multinodal character at low agitation rates and high dispersed phase flow rate. Sauter mean drop diameter was found to depend on the agitation rate, the dispersed phase flow rate, the mass transfer direction and the plate free area. Correlations for d32 and the interfacial area were presented using Kolmogoroff's isotropic turbulence model.  相似文献   

11.
The dispersed phase holdup and drop size in solvent extraction columns vary along the column height and this affects the mass transfer coefficient and interfacial area. In this article, mass transfer study was performed experimentally using a 25 mm diameter agitated pulsed column. The axial distribution of mass transfer coefficient was determined by coupling population balance equation and axial dispersion model by taking the longitudinal variation in hydrodynamic performance into consideration. Feasibility of different mass transfer models in predicting concentration profiles was evaluated and a novel correlation based on effective diffusivity was developed. The results showed that both overall and volumetric mass transfer coefficients have significant change along the column height and greatly depends on the agitation speed and pulsation intensity. Increasing dispersed phase velocity also augments the overall mass transfer coefficient. The maximum number of transfer unit was measured to be 10 m−1 at agitation speed of 1000 rpm.  相似文献   

12.
The deacidification of corn oil by continuous liquid-liquid extraction was investigated in a rotating disc column. The solvent was ethanol containing approximately 6% water. The influence of rotor speed, oil phase flow, and column geometry upon the dispersed phase holdup and the mass transfer efficiency was studied. The dispersed phase holdup increased with the increase of rotor speed and oil phase flow. Pratt's equation was used for calculating the characteristic velocity. An inverse relation was observed between the characteristic velocity and rotor speed, which is different from data previously reported in the literature. The estimated volumetric mass transfer coefficients increased as rotor speed and oil phase flow increased. The experimental results proved that it is feasible to obtain a refined oil with an oleic acid content less than 0.3 wt% by continuous solvent extraction. They also indicated that the corresponding loss of neutral oil was less than 5 wt%. Such value for the loss of neutral oil is significantly lower than the results reported in the literature for alkali or physical refining of corn oil.  相似文献   

13.
Microchannels have great potential in intensification of gas–liquid–liquid reactions involving reacting gases, such as hydrogenation. This work uses CO2–octane–water system to model the hydrodynamics and mass transfer of such systems in a microchannel with double T‐junctions. Segmented flows are generated with three inlet sequences and the size laws of dispersed phases are obtained. Three generation mechanisms of dispersed gas bubbles/water droplets are identified: squeezing by the oil phase, cutting by the droplet/bubble, cutting by the water–oil/gas–oil interface. Based on the gas dissolution rate, the mass transfer coefficients are calculated. It is found that water droplet can significantly enhance the transfer of CO2 into the oil phase initially. When bubble‐droplet cluster are formed downstream the microchannel, droplet will retard the mass transfer. Other characteristics such as phase hold‐up, bubble velocity and bubble dissolution rate are also discussed. The information is beneficial for microreactor design when applying three‐phase reactions. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1727–1739, 2017  相似文献   

14.
Taking into account the effect of velocity profiles of the continuous phase in interstices of drops,dragcoefficient and relative motion correlations for dispersed liquid-liquid two-phase flow in absence of mass transferwere developed in terms of the pseudo-fluid concept based on the simple similarity criteria and the mixtureviscosity model suggested by Ishii and Zuber.The present model was compared with the experimental data fromfive(different sources and also with seven other pertinent correlations available in literature.Fairly goodpredictions were obtained under wide ranges of the dispersed phase holdup and Reynolds number.The validity ofthe present model has also been checked against the experimental slip velocity data and holdup data obtained ina Karr reciprocating plate extraction column by the author of the present paper and satisfactory agreement isachieved、The results show that the equations of the motion of a multi-droplet system can be formulated in aform identical with those for a single dr  相似文献   

15.
在装有静态分布器的萃取塔中 ,对有气体搅拌下的水、煤油 (苯甲酸 )萃取系统的滞液率、气含率和传质系数进行了实验研究 ,从而得出气体搅拌下传质更充分的结论。分析了滞液率、气含率和传质系数的影响因素及分布规律。  相似文献   

16.
在筛板萃取塔中引入气体搅动,既能明显提高装置的传质效率,又能大幅提高装置处理能力。筛板塔的通量随气速的变化规律与填料塔有显著区别,其性能研究有重要意义。利用煤油(苯甲酸)-水-空气体系,考察了气体搅动和筛孔直径对萃取塔流体力学和传质性能的影响。结果表明,随着表观气速的增加,气含率、分散相含率、液泛速率和传质效率均明显增加。但过高的气速也会导致分散相的过于分散和乳化,传质性能下降,直至液泛。不同直径的筛孔相比,较小的筛孔使分散相停留时间延长,分散相含率和传质效率提高,但液泛速率和处理能力降低。  相似文献   

17.
The effects of gas‐agitation and packing on hydrodynamics and mass transfer were investigated through experiments with air‐kerosene (benzoic acid)‐water system and corrugated‐packing of calendering plate with hole. The holdup of gas, holdup of dispersed liquid phase and mass transfer coefficient increase and the flooding velocity decrease with the increase in superficial gas velocity. Over‐agitation of gas causes over‐dispersion and emulsification of dispersed liquid phase, reduction of mass transfer performance and even flooding. The mass transfer performance of a packed column is far better than that of an unpacked column.  相似文献   

18.
The effect of solute mass transfer between the two liquid phases on the drop size distribution and holdup profiles of the dispersed phase in a multistage extraction column is experimentally investigated in this article. Experimental results of the drop size distribution, dispersed-phase volume fraction (holdup), and concentration profiles are obtained for both directions of mass transfer. The drop size distribution is measured by a photomicrographic technique, the holdup profile is measured by an ultrasonic technique, and the concentration profiles are measured by refraction index measurements. A strong influence of the mass-transfer direction on drop size and holdup has been found. The results are in qualitative agreement with the observations of other investigators. Mass transfer of butyric acid from toluene (dispersed) to water (continuous) produced larger drop sizes and lower values of the dispersed-phase holdup than for the equilibrated toluene—water system. For mass transfer of butyric acid from water (continuous) to toluene (dispersed) smaller drop sizes and higher holdup values are observed than for the equilibrated toluene-water system. This behavior significantly affects the performance of the extractor and indicates the necessity for more studies to determine the physics of the phenomenon and to model these processes appropriately.  相似文献   

19.
选取CO2-K2CO3/KHCO3为吸收体系,次氯酸钠为催化剂,甲苯、异戊醇为第2液相,应用Danckwerts图来同时确定液侧传质系数KL和界面面积a,通过实验研究了分散第2液相的加入对气液传质的影响。实验结果表明,随着分散相体积分数φ(1%—10%)的增大,或分散相形成的液滴直径的减小,以及传质组分在分散相和连续相中溶解度的比值m(即传质组分在实验体系的分配系数)增加,或在二相间的相对扩散系数增加时,可显著增强气液传质,为气液液三相体系的系统化研究提供了实验依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号