首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
理论计算得出:氢降低位错运动点阵阻力,使得裂尖释放位错临界应力强度因子降低;氢的存在使裂尖所释放的位错受到附加吸引力,缩短了 DFZ。TEM 原位拉伸实验表明(i)在氢气氛中,纯铁裂尖位错释放的临界应力强度因子降低。(ii)对 Fe-3%Si 单晶体,电解充氢后裂尖DFZ 消失。(iii)Fe-3%Si 多晶体预形变后充氢,裂尖存在 DFZ。实验结果证实了作者提出的理论模型。  相似文献   

2.
ESTIMATIONS OF STRESS INTENSITY FACTORS FOR SMALL CRACKS AT NOTCHES   总被引:1,自引:0,他引:1  
This paper presents a simple method for determining the stress intensity factors for small notch-emanating cracks. The proposed method is based on similarities between elastic notch-tip stress fields described by two parameters; the stress concentration factor K1, and the notch-tip radius ρ. The method developed here is rather general, and can be used for a variety of central and edge notches with through-thickness of semi-elliptical cracks. The predicted values are in good agreement with the available numerical data.  相似文献   

3.
4.
Abstract— Transmission and reflection photoelasticity has been used to determine the stress intensity factors for artificial cracks emanating from a hole in two-dimensional tensile plates. Three geometries were investigated, namely a free hole, a pin-loaded hole and a hole with an interference-fit pin. All these cases relate to situations commonly found in aircraft structures. The results have been compared where possible with analytical data and a good correlation was found for these cases.  相似文献   

5.
Stage-II fatigue crack growth paths in firtree fixtures have been predicted using a photoelastic technique. Initiation was assumed to occur at the edge of contact on the load-bearing flanks and, subsequently, the cracks were extended in the direction of the maximum circumferential stress. After a short initial length, in which propagation was perpendicular to the contact surface, the direction of crack growth was, in a broad sense, equivalent to the hoop direction in the disc. Stress intensity factors were found for the majority of the crack path using data taken from the isochromatic fringe patterns. It was concluded that the most catastrophic failure was likely to occur from the innermost land of the firtree and that the width of the firtree had little influence on the stress intensity factors.  相似文献   

6.
Abstract Stress intensity factors for circumferential surface cracks in pipes have been derived using the finite element method. Both cracks located at the in- and outside of the pipes have been analysed. The derived solutions cover a wide range of geometry and load configurations and are presented in a tabular form that defines influence functions for the stress intensity factor along the whole crack front. The solutions show good agreements in comparisons to other published solutions.  相似文献   

7.
Abstract— A weight function method, recently developed by the authors, is applied to calculate stress intensity factors for corner cracks emanating from a semi-circular notch under crack face polynomial pressure loading. A wide range of configuration parameters are considered. These results, combined with superposition principle, allow determination of stress intensity factors under general loading conditions. The approach is demonstrated by obtaining stress intensity factors for the load cases of remote tension and shot-peening residual stresses at the notch.  相似文献   

8.
Abstract— Fretting loads on the surfaces of structural components can cause accelerated growth of short cracks. The rate of growth will depend on the combined stress intensity factor resulting from both remote and local loading. Many stress intensity factor solutions are available for remote loading, but solutions for arbitrary fretting loads are not readily accessible. In this paper accurate crack-line Green's functions are obtained from a boundary element analysis and then used to develop the Green's functions for loads on the edge of a half-plane containing a slant crack at various angles to the edge. These latter Green's functions can be used to obtain stress intensity factors for arbitrary stresses (normal or shear) on the edge of the half-plane without further stress analysis; simple integration procedures are all that is required.  相似文献   

9.
Abstract— Stress intensity calibrations have been determined for cracks at the root of a semi-circular edge notch loaded in tension using a localised grid refinement technique for finite element analysis. The technique is of particular value in situations where a fully connected mesh model is difficult to achieve or where enhanced accuracy is needed in a small sub-region of a model. Solutions were as accurate as those from a conventional refined mesh but with an approximately two fold reduction in run time. The resulting stress intensity factors are in good agreement with those estimated using a notch correction function and the equivalent un-notched crack solution.  相似文献   

10.
Abstract— The stress field in front of a crack tip lying in a plane bimaterial interface is always of a complex nature. The stress intensity factor characterising its asymptotic variation is therefore a complex number and its assessment from a numerical calculation requires the separation of the particular loading modes by an appropriate method. A suitable method is provided by the combination of curve integrals and an auxiliary singular field, enabling this separation by means of simple post-processing. This method can also be applied to the separation of load modes in front of the crack tip in a homogeneous specimen exposed to a mixed-mode load.  相似文献   

11.
表面裂纹应力强度因子计算的边界元法   总被引:1,自引:0,他引:1  
杨琦  谢慧才 《工程力学》1990,7(2):57-61
本文用8节点二次等参元边界元法计算了半椭圆形表面裂纹的应力强度因子。在裂纹尖端附近使用了8节点奇异元,而在除裂尖附近以外的边界使用了4~8节点的变节点单元,以便于网格的疏密过渡。文中采用的等精度积分等处理方法都在一定程度上提高了解法的有效性。通过将本文解与高自由度的Newman有限元解比较表明:本文解的精度是较高的,也说明了用边界元法解这类问题只需很少的自由度就能得到令人满意的结果。  相似文献   

12.
Abstract— An alternative methodology is presented for determining stress intensity factors for cracks subject to mixed-mode displacements. The methodology involves thermoelastic data generated from a SPATE (Stress Pattern Analysis by Thermal Emission) system and has been adapted from one used successfully in photoelasticity. The thermoelastic data is collected throughout the elastic stress field dominated by the crack tip singularity. The stress field is described using a Fourier series within Muskhelishvili's approach. This method allows different applied stress fields to be described which may include transient or non-uniform stress fields. The results obtained using the new methodology are at least as good as those obtained previously for pure mode I cases, and generally better for mixed mode displacement conditions.  相似文献   

13.
裂纹面荷载作用下多裂纹应力强度因子计算   总被引:1,自引:0,他引:1  
该文基于比例边界有限元法计算了裂纹面荷载作用下平面多裂纹应力强度因子.比例边界有限元法可以给出裂纹尖端位移场和应力场的解析表达式,该特点可以使应力强度因子根据定义直接计算,同时不需要对裂纹尖端进行特殊处理.联合子结构技术可以计算多裂纹问题的应力强度因子.数值算例表明该文方法是有效且高精确的,进而推广了比例边界有限元法的...  相似文献   

14.
Stress intensity factors are calculated in weighted average at the surface and the deepest point of a circular-fronted surface crack in a cylindrical bar by use of the weight function method. A wide range of various crack shapes are studied, from a nearly straight-fronted edge crack to a semi-circular crack front. Use of the weight function method requires that the crack opening displacement field of a reference load has to be known. It was obtained by 3-D finite element analysis. Results are presented for the cracked cylinder subjected to a constant stress (tension) and a linear stress distribution acting perpendicular to the crack faces and they are compared with values found by other investigators.  相似文献   

15.
This paper presents mode I stress intensity factors for external circumferentially cracked hollow cylinders, which are assumed to be made of functionally graded materials and subjected to remote uniform tension. The conventional finite element method is improved by introducing isoparametric transformation for simulating the gradient variations of material properties in the finite elements. This improved finite element method is verified to be effective and efficient. Various types of functionally graded materials and different gradient compositions for each type are investigated. The results show that the material property distribution has a quite considerable influence on the stress intensity factors.  相似文献   

16.
应用双剪统一强度理论,研究了I型裂纹的塑性变形问题。给出了包含反映材料拉压性能差异的参数拉压比及反映中间主应力效应的参数b的I型裂纹裂尖塑性区形状和大小的统一解。已有的Tresca准则、Mises准则和Mohr-Coulomb准则解均是本文的特例或线性逼近。针对混凝土结构,画出了不同参数b情况下的裂尖塑性区半径变化图。得出了材料拉压比对I型裂纹裂尖塑性区影响很大。b对I型裂纹裂尖塑性区影响随拉压比的不同而不同,拉压比较大时,b对塑性区影响大,拉压比较小时,b对塑性区影响小的结论。该统一解可以适应于各种不同材料,能充分发挥材料潜力,具有普遍性和广泛的适应性,有一定的工程应用价值。结论对于研究各种材料的断裂问题有参考作用。  相似文献   

17.
Stress intensity factors were calculated, based on Bueckner's principle for cracks in both infinite and finite plates with notches subjected to biaxial loading. Approximate Green's functions have been obtained by modifying two existing Green's functions, originally for unnotched plates. Values of stress intensity factors calculated using Bueckner's principle with the approximate Green's functions are in good agreement with published stress intensity factors for cracks in both infinite and finite plates containing a circular notch or an elliptical notch, previously found by the method of boundary collocation.  相似文献   

18.
Weight functions were derived for the deepest point and surface point of a semi-elliptical surface crack in T-plate joints with weld angles between 0 and 45°. These weight functions were derived from reference stress intensity factor solutions obtained from three-dimensional finite element calculations, and verified using stress intensity factors for different non-linear stress fields and for far-field tension and bending cases. The differences between the weight function predictions and the finite element data were less than 10%. They are suitable for semi-elliptical surface cracks with aspect ratios in the range 0.05 ≤ a/c ≤ 1, together with relative depths 0 ≤ a/t ≤ 0.6 and weld angles 0 ≤ φ ≤ 45°.  相似文献   

19.
工程结构中存在着大量分布不均的弯折裂纹,对结构稳定性有较大影响。为了能够简单快速地得到弯折裂纹尖端应力强度因子(K)值,应用近似方法,将弯折裂纹近似为等效直裂纹,通过计算等效直裂纹尖端K值得到弯折裂纹尖端K值。在已有近似方法 (水平投影法)的基础上,提出了三种新的近似方法,分别为:垂线投影法、中心旋转法和连线法。新提出的三种近似方法与已有近似方法对比可知:优化了得到等效直裂纹的近似过程;修正和扩大了近似计算方法的适用范围。计算弯折裂纹的主裂纹尖端K时,当主裂纹与荷载方向垂直且次裂纹与荷载所在方向的夹角小于45°时,垂线投影法为最优近似方法;但当次裂纹与荷载所在方向的夹角大于45°时,中心旋转法为最优近似方法。计算弯折裂纹的次裂纹尖端K_(Ⅰ)时,水平投影法为最优近似方法,当计算弯折裂纹的次裂纹尖端K_(Ⅱ)时,在弯折裂纹主次裂纹长度比b/a<0.3范围内,垂线投影法、中心旋转法均优于水平投影法。与水平投影法相比,连线法更适用于计算主裂纹与荷载所在方向的夹角较小情况下的K_(Ⅱ)值。  相似文献   

20.
Abstract— The behaviour of physical short mode I cracks under constant amplitude cyclic loading was investigated both numerically and experimentally. A dynamic two-dimensional elastic-plastic finite element technique was utilised to simulate cyclic crack tip plastic deformation. Different idealisations were investigated. Both stationary and artificially advanced long and short cracks were analysed. A parameter which characterises the plastically deformed crack tip zone, the strain field generated within that zone and the opening and closure of the crack tip were considered. The growth of physically short mode I cracks under constant amplitude fully reversed fatigue loading was investigated experimentally using conventional cast steel EN-9 specimens. Based on a numerical analysis, a crack tip deformation parameter was devised to correlate fatigue crack propagation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号