首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The original two–impinging steams devices have proved useful for processes in gas–solid Systems. A modified form of the original two–impinging–streams reactor, with two additional air streams, was explored. All four air streams are fed tangentially to the reactor. The Performance characteristics included the determination of the pressure drop on the reactor, limits of the gas and solid particle mass flow rate, the mean residence time of the particles, and the drying heat transfer, as a function of air flow rates of the secondary and major air streams. The behaviour of the particles and their residence time distribution was investigated by applying a stochastic Markov chain model. It was found that the secondary air stream increases the pressure drop on the reactor and the mean residence time of the particles along with their recycling in the reactor. On the other hand, the secondary air stream decreases the critical mass flow rate of the particles, delays their exit from the reactor and reduces the heat transfer coefficient in drying wet particles.  相似文献   

2.
Process design and scale-up require a fundamental understanding of the hydrodynamics of gas–solid flow in the circulating fluidized bed flue gas desulfurization (CFB-FGD) reactor although the CFB system has been widely used in flue gas desulfurization and flue gas cleaning processes. The hydrodynamics in the CFB-FGD reactor model was investigated by pressure measurements and specially designed sampling probe based on three dimensionless groups for practicable similarity of industrial CFB-FGD process. The results show that the pressure drop in the venturi section is predominant as high as 60% of the total pressure drop and the total pressure drop significantly increases with the increasing external solid circulating rates at the same superficial gas velocity. Moreover, the measurements of radial solid mass fluxes show that the flow pattern in the CFB-FGD reactor is a typical core–annulus flow and this flow structure prevails until the top of the reactor. Reflux ratios are used to quantitatively evaluate the internal solid reflux in the reactor and the values in the low section of the reactor are much higher than those in the upper section.  相似文献   

3.
针对U型阀在常温常压下的流态化排料状态,建立了以力平衡为基础的数学模型,用于计算该状态下的排料速率,并在循环流化床系统中用平均粒径为81.9 mm的石英砂颗粒进行流态化排料实验,对数学模型进行验证. 结果表明,排料室表观气速为1.5~2.5Umf(Umf为最小流化速率)时,排料速率随排料室表观气速增大而增大,U阀处于流态化排料状态. 不同条件下用模型对排料室压降和排料速率进行计算,与实验数据的平均计算误差排料室压降为±2%,排料速率为±7%,计算值和实验值吻合较好.  相似文献   

4.
A unique normalized radial pressure profile characterizes the bed of a gas‐solid vortex reactor over a range of particle densities and sizes, solid capacities, and gas flow rates: 950–1240 kg/m3, 1–2 mm, 2 kg to maximum solids capacity, and 0.4–0.8 Nm3/s (corresponding to gas injection velocities of 55–110 m/s), respectively. The combined momentum conservation equations of both gas and solid phases predict this pressure profile when accounting for the corresponding measured particle velocities. The pressure profiles for a given type of particles and a given solids loading but for different gas injection velocities merge into a single curve when normalizing the pressures with the pressure value downstream of the bed. The normalized—with respect to the overall pressure drop—pressure profiles for different gas injection velocities in particle‐free flow merge in a unique profile. © 2015 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 61: 4114–4125, 2015  相似文献   

5.
三维上流式反应器床层流动和返混特性   总被引:1,自引:0,他引:1       下载免费PDF全文
王威杰  雍玉梅  杨超  于康 《化工学报》2018,69(1):381-388
采用内径为280 mm的上流式反应器,以空气模拟气相、甘油和水混合溶液模拟渣油。用3种不同粒径的氧化铝球形工业催化剂颗粒为填充颗粒,考察了不同模拟物系的颗粒粒径、颗粒密度、液相黏度、不同床层的高径比和不同操作条件对上流式反应器内床层压降及其波动、床层轴向返混的影响规律。得到模拟工业运行物系和操作条件的上流式反应器床层总压降关联式,相对误差在12%以内。床层总压降均随床层高径比、颗粒密度和液相黏度增加而增大,但随颗粒粒径的增大而减小,床层压降波动随表观气速增加而增大。填充颗粒粒径越小、颗粒密度越小、高径比越大,床层内轴向返混越严重;床层内压降和轴向返混均随表观气速的增加而增大。  相似文献   

6.
A short-contact cyclone reactor has been designed for the particular case of fluid catalytic cracking. The new type reactor mainly includes two parts: a reaction chamber and a separation chamber. So the cracking reactions and the separations between the products and catalysts could occur respectively and simultaneously. A three dimensional model was used to representing key parts of a laboratory cyclone reactor. The Eulerian–Eulerian computational fluid dynamics model with the kinetic theory of granular flow was adopted to simulate the gas–solid two-phase flow. The particle concentration distribution and pressure drop were measured by a PV-6A particles velocity measure instrument and a U-manometer, respectively. Simulated results show that in the reaction chamber solids can be transformed into a homogeneous dispersed flow, particles’ concentration becomes uniform gradually while catalysts flowing down, the concentration is a little higher near the wall because of boundary effect. After the gas–solid flowing into the separation chamber, the gas phase is separated with solids completely. The new reactor has a good contact and separation effect. Simulated results make a reasonable agreement with the experimental findings.  相似文献   

7.
大颗粒三相环隙气升式环流反应器流体力学行为   总被引:1,自引:3,他引:1       下载免费PDF全文
张念  王铁峰  于伟  王金福 《化工学报》2009,60(10):2446-2452
研究了大颗粒体系气升式环流反应器的流体力学行为,考察了表观气速和颗粒质量分数对床层膨胀高度、循环液速和固含率分布的影响。实验结果表明,按颗粒的运动状态不同可以将反应器内的流动分为3个区域,即固定床区域、膨胀床区域和循环床区域,各流动区域内的流动行为存在显著差异。随着颗粒质量浓度的增大,起始流化气速和最小循环气速均显著增大。基于三相流化床的流化模型和环流反应器的特点建立了相应的数学模型,对大颗粒三相气升式环流反应器的起始流化气速和最小循环气速进行了预测,模型预测值与实验测量值吻合良好。  相似文献   

8.
任欢  赵兵涛  王东燊  张芸 《化工进展》2020,39(3):882-889
为探究颗粒负荷对小型旋风器内气固两相流动的影响,基于雷诺应力模型(RSM)和欧拉-欧拉方法的混合流模型(Mixture)进行气体-颗粒、颗粒-颗粒的相间耦合计算。采用粒径为0.5~5μm的颗粒组在40L/min、60L/min和80L/min的入口流量下模拟0~3kg/m3的5种不同颗粒浓度工况,通过对比旋风器内纯气相流场和颗粒负荷流场的不同,研究了颗粒的存在对流场的影响;探究了入口流量和浓度变化对旋风器内分离效率和压降特性的影响。基于模型有效性验证的数值模拟结果表明:较高颗粒浓度负荷使旋风器内的气相流场发生显著变化。随着入口流量的增大,旋风器的分离效率先增大后减小,压降呈非线性增大。随着颗粒浓度的增大,旋风器的分离效率逐渐增大,压降先减小后增大。  相似文献   

9.
Vaporization and cracking of liquid oil injected in a gas-solid riser (fluid catalytic cracking riser reactor) was computationally studied in this work. Evaporation of a single drop injected in a stream of gas-solid mixture was analyzed first. A model for simulating evaporation of a drop considering heat transfer from the gas phase as well as from the solid particles was developed. The model relates the evaporation rate of droplet with rate of collisions of solid particles, specific heat capacities of solid and liquid, latent heat of vaporization, relative velocity of gas and liquid and temperatures of three phases. The understanding gained from such a model was then extended to simulate evaporation of liquid drops injected in FCC risers. The Eulerian-Lagrangian approach was used to simulate simultaneous evaporation and cracking reactions occurring in FCC riser reactors. A commercial CFD code, FLUENT (of Fluent Inc., USA) was used. Four and ten lump models were used for simulating cracking reactions. Appropriate user defined functions were developed to implement heterogeneous kinetics and heat transfer models in FLUENT. A special algorithm was developed to calculate accumulated coke on catalyst particles. A boiling point range was considered for simulating realistic oil feedstock. The model was first evaluated by comparing predicted results with published industrial data. The simulations were then carried out to understand influence of key design and operating parameters on performance of FCC riser reactors. The parameters studied included; initial oil droplet distribution, catalyst inlet temperature, catalyst to oil ratio and thermal cracking. The approach, model and results presented here would be useful for optimization of FCC operation, cost to benefit analysis of new FCC nozzles and related decision-making.  相似文献   

10.
Pressure drops are measured on different nozzles of various pipe sizes in dense phase pulverized coal pneumatic conveying. From the experimental results, we conclude that the effect of the gas phase nozzle pressure drop is negligible when comparing with the solid phase pressure drop in the experimental range. The main influence factors contributing to the nozzle pressure drop are gas and solid mass flow rate, solids loading ratio, and the diameters of the nozzle inlet and outlet. A new model was developed to predict the nozzle pressure drop in dense phase pneumatic conveying of pulverized coal based on the Barth's pneumatic conveying theory. The pressure drop predictions from the model are in good agreement with the experimental values. The model quantified the important influence factors of the nozzle pressure drop.  相似文献   

11.
陈勇  由宏新 《化工进展》2013,32(3):521-526
基于Fluent的多孔介质模型,建立了变压吸附制氧发生器的立式填充床模型。采用用户自定义函数功能,以反映吸附传质、传热,并将多孔介质单相模型整合为更精确的气固两相耦合模型。在此基础上,模拟了吸附颗粒直径对气相压力、速度、床层压降以及氧气分离浓度、回收率等参数的影响情况。结果表明:床层压降随颗粒直径的增大而减小;床层对入口急流的抗穿透性能随颗粒直径的增大而减小;相同条件下,采用较小颗粒直径能够提高氧气分离浓度、回收率,原因在于小颗粒直径降低了床层内气体的流速,增加了吸附时间,促进了吸附的进行。  相似文献   

12.
This paper presents the effects of solid loading on the performance of a cyclone with pneumatic extraction of solids. The cyclone is a non‐conventional design, especially used for hot‐gas cleaning applications such as pressurized fluidized bed combustors (PFBC). A scaled‐down cold‐flow model was employed for the research. Experiments were conducted at 9–14 m/s inlet gas velocities, inlet solid loadings ranging from 30 to 230 g/kg gas, and bottom gas extraction percentages from 0.3 to 1.5%. Experimental results of pressure drop resistance coefficients and collection efficiency were compared with literature predictions. At PFBC operating conditions, cyclone geometry and solid concentration are the main parameters influencing cyclone pressure drop and collection efficiency. The vortex penetration in dipleg causes lower pressure drop values and higher collection efficiencies than predicted. These parameters can be suitably predicted for PFBC cyclones by introducing a modified penetration length in Muschelknautz's model [1]. For the present cyclone design, a new correlation of pressure drop, including the influence of solid loading, is proposed. A new method for detecting cyclone fouling, not previously addressed, is also presented, based on the evolution of the pressure drop resistance coefficient. An enhanced separation efficiency has been found, related to collection efficiency, which is especially important for particle sizes below 10 μm revealing agglomeration effects.  相似文献   

13.
高长径比三相内环流反应器中相含率的分布研究   总被引:1,自引:0,他引:1  
王宇  刘永民  龙帅 《化工科技》2013,21(1):20-23
在长径比为22的三相内环流反应器中,常温常压下,以空气-水-石英砂为物系,根据无因次准数建立了气含率、固含率的预测模型,考察了在不同粒径下上升区气含率、下降区气含率和上升区固含率、下降区固含率随表观气速的变化规律和不同固体体积分数下轴向固含率的分布情况。结果表明:不同粒径下上升区和下降区气含率均随表观气速的增大而增大;当粒径(ds)≤0.3mm时,上升区固含率随表观气速的增加呈平缓趋势,下降区固含率随表观气速的增加而增加,当0.3mm〈d。≤1.2mm时,上升区固含率随表观气速的增加而呈先下降后增加的趋势,下降区固含率随表观气速的增加而下降;不同固体体积分数下的固体颗粒的固含率随着轴向高度的增大而变化平缓,能够均匀的分布在反应器中;气含率和固含率的计算值和实验值吻合较好,其平均相对误差分别为6.32%、4.56%。  相似文献   

14.
A systematic approach was developed to consider liquid–solid reactions with rough solid particles and shrinking particle model. The model is able to predict the reactivities of both non-porous and porous solid particles; the reaction order with respect to the solid material varies from zero (non-porous slab) to one (porous particle).As a model system, leaching of zinc sulphide (sphalerite) with ferric iron in an acidic environment was considered. The modelling was based on experimental data obtained in a batch reactor system, for which both conventional mixing and ultrasound was applied. Rival models based on plausible reaction mechanisms were derived and discriminated qualitatively and with regression analysis. The best model described the leaching reaction as a stepwise process, where ferric ions react with solid zinc sulphide in consecutive surface reaction steps. Shrinking particle model along with the surface roughness approach was used. The model predicts first order behaviour with respect to zinc sulphide, while the reaction order with respect to ferric iron varies from one to two as the reaction progresses. This is in accordance with experimental observations. The intrinsic kinetics, liquid–solid mass transfer and the effect of ultrasound were well described by the best kinetic model.  相似文献   

15.
A carbon nanofiber (CNF)/graphite felt composite was synthesized by growing CNFs on the surface of graphite fibers and was used as the packing of a fixed bed reactor under two phase flow conditions. The pressure drop, axial dispersion and mass transfer in the liquid were studied by experiment and by piston dispersion exchange (PDE) model. It was shown that the pressure drop and total liquid up could be predicted by the slit model in an acceptable accuracy. The axial dispersion in the liquid phase in the composite and the mass transfer between the dynamic and static liquid are higher than in the packed bed of solid particles owing to the porous and fluffy CNF layer on the carbon felt fiber.  相似文献   

16.
三相携带床的流体力学特性研究   总被引:1,自引:1,他引:0  
研究了空气一水-黄沙三相系统在携带床反应器中的流体力学特性。反应器直径0.07m。实验考察了表观气速Ug、表观浆液流速UsL、固含率εs等因素对气含率εg和床层压降△P的影响以及三相携带床的操作特性。回归实验数据得到气含率及床层压降与各因素的关联式为εg=0.4084U△P=5783.672U研究结果为三相携带床工业反应器提供了流体力学依据。  相似文献   

17.
In this study, a mathematical model was developed to simulate an adsorption process for dehydration of a gas stream. In deriving the model, the following assumptions were made. Variation of the gas velocity along the bed length was accounted for and the bed pressure drop was calculated by the Ergun equation. Mass and heat transfer outside the solid particles were assumed to be convective and those inside the particle were assumed to be diffusive. The dual site Langmuir isotherm was employed in predicting adsorption equilibrium and the Peng–Robinson equation was used as the PVT relation. The resulting mathematical model was solved by the finite volume method and the results were verified against experimental data reported by Mohamadinejad et al. [2000. Separation Science and Technology 35,1] and Gorbach et al. [2004. Adsorption 10,1]. Good agreement was observed between the predictions of the model and the experimental data. The developed model was used to perform parametric study. Our results suggest that the break-through time decreases linearly with the square of particles diameter. It also decreases linearly with the inverse of particles tortuosity. A similar trend appears to exist for variations of the bed percent saturation. The bed pressure drop increases linearly with the inversed diameter of particles.  相似文献   

18.
A computational fluid dynamics software (CFX) was modified for gas/particle flow systems and used to predict the flow parameters in the riser section of a circulating fluidized bed (CFB). Fluid Catalytic Cracking (FCC) particles and air were used as the solids and gas phases, respectively. Two-dimensional, transient, isothermal flows were simulated for the continuous phase (air) and the dispersed phase (solid particles). Conservation equations of mass and momentum for each phase were solved using the finite volume numerical technique. Two-dimensional gas and particle flow profiles were obtained for the velocity, volume fraction, and pressure drop for each phase. Calculations showed that the inlet and exit conditions play a significant role in the overall mixing of the gas and particulate phases and in the establishment of the flow regime. The flow behavior was analyzed based on the different frequency of oscillations in the riser. Comparison of the calculated solids mass flux, solids density and pressure drop with the measured pilot-scale PSRI data (reported in this paper) showed a good agreement.  相似文献   

19.
A computational fluid dynamics software (CFX) was modified for gas/particle flow systems and used to predict the flow parameters in the riser section of a circulating fluidized bed (CFB). Fluid Catalytic Cracking (FCC) particles and air were used as the solids and gas phases, respectively. Two-dimensional, transient, isothermal flows were simulated for the continuous phase (air) and the dispersed phase (solid particles). Conservation equations of mass and momentum for each phase were solved using the finite volume numerical technique. Two-dimensional gas and particle flow profiles were obtained for the velocity, volume fraction, and pressure drop for each phase. Calculations showed that the inlet and exit conditions play a significant role in the overall mixing of the gas and particulate phases and in the establishment of the flow regime. The flow behavior was analyzed based on the different frequency of oscillations in the riser. Comparison of the calculated solids mass flux, solids density and pressure drop with the measured pilot-scale PSRI data (reported in this paper) showed a good agreement.  相似文献   

20.
Global modelling of a gas-liquid-solid airlift reactor   总被引:1,自引:0,他引:1  
This paper presents a global model of three phase flow (gas-liquid-solid) in an internal airlift reactor. The airlift is composed of four zones: a riser (on the aerated side on the internal wall), a downcomer (on the opposite side) and two turning zones above and below the internal wall. Tap water is the liquid continuous phase and the dispersed phases are air bubbles and polyethylene particles. The global modelling of the airlift involves mass and momentum equations for the three phases. The model enables phase velocities and phase volume fractions to be estimated, which can be compared to experimental data. Closure relations for the gas and solid drift velocities are based on the model proposed by Zuber and Findlay. The drift flux coefficients are derived from CFD numerical simulations of the airlift. Gas bubble and solid particle averaged slip velocities are deduced from momentum balances, including drag coefficient correlations. The link between Zuber and Findlay model and the two-fluid model is established. In the experiment as well as in the model, the gas flow rate is fixed. However, the liquid and solid flow rates are unknown. Two closure relations are needed to predict these flow rates: the first closure relation expresses that the volume of solid injected into the airlift remains constant; the second closure relation expresses a global balance between the difference of column height in the riser and the downcomer and the total pressure drop in the airlift. The main parameters of a three phase airlift reactor, like gas and solid volume fractions, are well predicted by the global model. With increasing solid filling rate (40%), the model starts to depart from the experimental values as soon as coalescence of bubbles appears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号