首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The calcination temperature (Cal-Temp) plays a vital role in the performance of supported metal catalysts. In this work, the alumina supported Ni, NiMo, Co, and CoMo catalysts were prepared at different Cal-Temp. The catalysts were characterized by various techniques to identify the catalytically active different surface species to correlate their role in the hydrodeoxygenation of stearic acid. With increasing Cal-Temp, the metal dispersion was increased for Ni, NiMo, and CoMo catalyst (up to 973 K) and decreased for Co catalyst. With increasing Cal-Temp, the catalytic activity was thus increased for Ni and NiMo catalyst and decreased for Co catalyst. The activity of CoMo catalyst was, however, enhanced with rising Cal-Temp up to 973 K and declined slightly after that. The optimum Cal-Temp for Ni, NiMo, Co, and CoMo catalyst was found to be 1023 K, 973 K, 773 K, and 973 K. The reaction followed the decarbonylation route over active metallic centers (Ni and Co) and the HDO route over oxophilic M2+?MoO2 (M = Ni/Co) and reducible cobalt oxide species. The C17 alkane was thus the principal product over Ni catalyst, whereas C18 alkane was the primary product over CoMo and NiMo catalyst. In contrast, both C17 and C18 alkanes were significant over Co catalyst.  相似文献   

2.
A study on the catalytic properties of the transition metals (Ni,Co,Mo)-carbides, -nitrides for thiophene and dibenzothiophene hydrotreating was conducted. The (Ni,Co)-Mo carbides and the corresponding (Ni,Co)-Mo nitride phases showed a catalytic activity higher than conventional bimetallic (Ni,Co)-Mo sulfides. In addition, a study was done on the effect of the atomic ratios, i.e., 0.1 ≤ M+/(M+ + Mo) ≤ 0.9 where M+ stands for Ni or Co, and the concentration of promoters such as phosphorous, which was a structural stabilizing agent. The catalytic performance of the bimetallic NiMo and CoMo carbides and nitrides was studied using thiophene and dibenzothiophene hydrodesulfurization (HDS) as model reactions at 623 K and P = 1 atm. The catalytic activity of the dispersed carbide and nitride phases on the alumina carrier was more significant than that of the reference catalysts, alumina supported NiMo-S and CoMo-S. The metallic character of the NiMo and CoMo carbides was evidenced by their higher hydrogenation activity in thiophene HDS, while the nitrides favored both hydrogenation and hydrogenolysis type reactions.  相似文献   

3.
Co, Mo, NiMo and CoMo catalysts supported on alumina, fishbone and platelet carbon nanofibers (CNFs) have been prepared. The dispersion of the oxide phases was qualitatively studied and compared using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The reducibility of the catalysts was studied by temperature programmed reduction (TPR). Hydrodesulfurization (HDS) of thiophene was used as a model reaction to compare the activity of different catalysts. The activity tests showed that the alumina supported catalysts exhibited higher activity compared to the corresponding CNF supported catalysts, and the NiMo catalysts were more active than the corresponding CoMo catalysts. The thiophene HDS activity was correlated with the dispersion of the molybdenum species and the reducibility of different catalysts. Interestingly, the CNF supported Co catalysts have higher thiophene HDS activity than the CNF supported Co(Ni)Mo catalysts.  相似文献   

4.
Carolina Leyva  Mohan S. Rana 《Fuel》2007,86(9):1232-1239
CoMo and NiMo supported Al2O3 catalysts have been investigated for hydrotreating of model molecule as well as industrial feedstock. Activity studies were carried out for thiophene and SRGO hydrodesulfurization (HDS) in an atmospheric pressure and batch reactor respectively. These activities on sulfided catalysts were evaluated as a function of promoter content [M/(M + Mo) = 0.30, 0.34, 0.39; M = Co or Ni] using fixed (ca. 8 wt.%) molybdenum content. The promoted catalysts were characterized by textural properties, XRD, and temperature programmed reduction (TPR). TPR spectra of the Co and Ni promoter catalysts showed that Ni promotes the easy reduction of Mo species compared with Co. With the variation of promoter content NiMo catalyst was found to be superior to CoMo catalyst for gas oil HDS, while at low-promoter content the opposite trend was observed for HDS of thiophene. The behavior was attributed to the several reaction mechanisms involved for gas oil HDS. A nice relationship was obtained for hydrodesulfurized gas oil refractive index (RI) and aromatic content, which corresponds to the Ni hydrogenation property.  相似文献   

5.
Magnetically recyclable Ni(Co)‐promoted MoS2 catalysts with greigite (G) core were synthesized and their activity and selectivity in hydrodeoxygenation of stearic acid were investigated. The activity of the catalysts tested at 320 °C and H2 initial pressure of 3.5 MPa could be ranked as NiMo/G > CoMo/G > Mo/G. Two main products were detected, C18 (through HDO pathway) and C17 hydrocarbons (through DCO pathway). HDO was the dominant pathway for all of the catalysts. As for the C18/C17 ratio, the catalysts were found to be in the order: Mo/G > CoMo/G ≈ NiMo/G. The Paraffin/Olefin ratio was over 1 for all of the catalysts with NiMo/G showing the highest ratio. Stearic acid was found to have an inhibiting effect on the adsorption of intermediates over the active sites. Moreover, the concentrations of intermediates decreased at high conversions of stearic acid. The formation of the intermediate aldehyde is through C–O hydrogenolysis of the fatty acid following the protonation, dehydrogenation, and hydride addition steps. The same steps were suggested to be involved in the transformation of the aldehyde to the alcohol. Formation of Cn‐1 hydrocarbons was found to be via decarbonylation route. The enhancement of the DCO pathway over the promoted catalysts was related to the electron transfer from the promoting atom to an adjacent sulphur atom and reduction in sulphur‐metal bond strength.  相似文献   

6.
Supports of Mo and NiMo catalysts were prepared and tested in hydrotreatment model reactions. These supports, composed of zirconia and various amounts of yttria, were obtained by synthesis in molten salts.

It was found that the distribution of yttrium in zirconium oxide was homogeneous. Moreover, it was shown that the crystalline structure as well as the textural properties (especially the porosity) were stabilized.

These solids were then used as supports of Mo and NiMo sulphides and their activities were compared to those of a commercial NiMo alumina catalyst.

In biphenyl hydrogenation, with the same coverage of Mo (2.8 at/nm2), the activities per gram of both catalysts (supported on zirconia and alumina) were similar, while the activity per atom of Mo of the catalyst supported on ZrO2---Y2O3 was twice the activity of the catalyst supported on alumina.

For NiMo catalysts, a ratio R= Ni/(Ni+Mo)=0.4 with Mo = 2.8 at/nm2 and a co-impregnation of the Mo and Ni were required to have a good synergetic effect. The activity per atom of Mo in biphenyl hydrogenation was then enhanced more than twofold when compared to the NiMo/alumina catalyst. In an HDN model reaction (conversion of diethylanyline in the presence of quinoline) the results obtained with zirconia were much better than with alumina.  相似文献   


7.
MgO-supported Mo, CoMo and NiMo sulfide catalysts were prepared by impregnation using slurry MoO3/methanol and solutions of Ni and Co nitrates in methanol. The catalysts exhibited very high hydrodesulfurization activity and low hydrodenitrogenation activity in competitive reactions of thiophene and pyridine. The promotion effect for HDS of Ni and Co was higher for our MgO-supported MoS2 catalysts than for conventional Al2O3-supported catalysts. The specific features in the TEM images of MgO-supported catalysts as compared to conventional Al2O3-supported catalysts were fairly broad MoS2 slab length distribution and the presence of unusually long MoS2 slabs.  相似文献   

8.
Recently, the Shuaiba Refinery of Kuwait National Petroleum Company (KNPC) conducted a test run using mixed NiMo/CoMo catalysts in one of the H–Oil reactors to verify the specifications of a CoMo catalyst. However, reduced unit performance and unstable operation were experienced. This led to the unit shut-down and process time loss. To search the causes for the different reactor behaviours, a research work was undertaken in the Petroleum Technology Department at Kuwait Institute for Scientific Research (KISR). It had found that the hydrodynamics of the mixed NiMo/CoMo and CoMo catalysts in a cold flow ebullated-bed reactor (EBR) were very different than NiMo catalyst alone.  相似文献   

9.
Al- and Ti-containing HMS materials, with a Si/M (Me = Al(Ti)) molar ratio equal to 40, were used as supports for preparing NiMo and CoMo HDS catalysts. The supports and catalysts were characterized by N2 adsorption–desorption (SBET), X-ray diffraction (XRD), UV–vis diffuse reflectance (DRS UV–vis), temperature-programmed reduction (TPR) and Raman spectroscopy. The catalysts were tested in the hydrodesulphurization (HDS) reaction of dibenzothiophene (DBT). All supported NiMo and CoMo catalysts on Al-HMS and Ti-HMS substrates showed higher catalytic activity than their Me-free counterparts. We found two interesting correlations between the structure and chemical coordination of the supported oxide precursors and catalytic activity. The differences observed in catalyst performance are attributed to the structure and specific electronic properties of the supported active species. From our results, it appears possible to optimize the Al- and Ti-loading to maximize the HDS activity.  相似文献   

10.
Al2O3 supported Mo, Ni, and NiMo/Al2O3 catalysts with various Ni contents were prepared to investigate the role of Ni as a promoter in a NiMo bimetallic catalyst system. The hydrodenitrogenation (HDN) reaction of pyridine as a catalytic probe was conducted over these catalysts under the same reaction conditions and the catalysts were characterized using BET surface area measurement, infrared spectroscopy, temperature programmed reduction, DRS and ESR. According to the results of reaction experiments, the NiMo/Al2O3 catalyst showed higher activity than Mo/Al2O3 catalyst in the HDN reaction and particularly the one with atomic ratio [Ni/(Ni+Mo)]=0.3 showed the best activity for the HDN of pyridine. The findings of this study lead us to suggest that the enhancement in the HDN activity with nickel addition could be attributed to the improvement in the reducibility of molybdenum and the formation of Ni-Mo-O phase.  相似文献   

11.
After the test run of several months two kinds of commercial catalysts (NiMo/Al2O3 and CoMo/Al2O3) were examined in hydrodesulfurization (HDS) of straight run (SRGO) and nitrogen-removed gas oils, at 340 °C under 50 kg/cm2 H2. Hydrogen renewal between stages was attempted to show additional inhibition effects of the by-products such as H2S and NH3. Spent NiMo/Al2O3 and CoMo/Al2O3 catalysts showed contrasting activities in HDS and susceptibility to nitrogen species, according to their catalytic natures, compared to those of their virgin ones. HDS over spent NiMo/Al2O3 was significantly improved by removal of nitrogen species, while that over spent CoMo/Al2O3 was much improved by H2 refreshment. The activity for refractory sulfur species such as 4,6-dimethyldibenzothiophene was reduced more severely than that for the reactive sulfur species such as benzothiophenes over spent catalysts. The effects of both two-stage hydrodesulfurization and nitrogen-removal were markedly reduced over the spent NiMo when compared with those over virgin NiMo one. The acidity of the catalysts was correlated with the inhibition susceptibility by nitrogen species as well as H2S and NH3. Spent catalysts apparently lost their activity due to the carbon deposition, which covered the active sites more preferentially. The spent NiMo catalyst carried more deposited carbon with larger C/H ratio and nitrogen content. Higher acidity was found to be present on the NiMo catalyst, but this was greatly decreased by the carbon deposition. Additionally, the reactivity of nitrogen species in HDS was briefly discussed in relation to the acidity of the catalyst and its deactivation by carbon deposition.  相似文献   

12.
Unsupported NiMo sulfide catalysts were prepared from ammonium tetrathiomolybdate (ATTM) and nickel nitrate by using a hydrothermal synthesis method involving water, organic solvent and hydrogen. The activity of these catalysts in the simultaneous hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was much higher than that of the commercial NiMo/Al2O3 sulfide catalysts. Interestingly, the unsupported NiMo sulfide catalysts showed higher activity for hydrogenation (HYD) pathway than the direct desulfurization (DDS) pathway in the HDS of DBT. The same trends were observed for the HDS of 4,6-DMDBT. Morphology, surface area, pore volume and the HDS activity of unsupported NiMo sulfide catalyst depended on the catalyst preparation conditions. Higher temperature and higher H2 pressure and addition of an organic solvent were found to increase the HDS activity of unsupported NiMo sulfide catalysts for both DBT and 4,6-DMDBT HDS. Higher preparation temperature increased HYD selectivity but decreased DDS selectivity. High-resolution TEM images revealed that unsupported NiMo sulfide prepared at 375 °C shows lower number of layers in the stacks of catalyst with more curvature and shorter length of slabs compared to that prepared at 300 °C. On the other hand, higher preparation pressure increased DDS selectivity but decreased HYD selectivity for HDS of 4,6-DMDBT. HRTEM images showed higher number of layers in the stack for the NiMo sulfide prepared under an initial H2 pressure of 3.4 MPa compared to that under 2.1 MPa. The optimal Ni/(Mo + Ni) ratio for the NiMo sulfide catalyst was 0.5, higher than that for the conventional Al2O3-supported NiMo sulfide catalysts. This was attributed to the high dispersion of the active species and more active NiMoS generated. The present study also provides new insight for controlling the catalyst selectivity as well as activity by tailoring the hydrothermal preparation conditions.  相似文献   

13.
《Applied catalysis》1988,36(2):221-238
A series of CoMo/Al2O3 catalysts containing a third additive, a Si, Ti, or P compound, were prepared using a consecutive impregnation method. The activities for the hydrodesulphurization (HDS), hydrodemetallization (HDM) and Conradson carbon residue (CCR) reduction of atmospheric residual oil were tested in a semi-batch basket type reactor. Cycle-aging tests were carried out for comparison of catalyst stability. The intrinsic rate constants of HDS from a semi-empirical calculation were used to test the coke tolerance of the catalysts. The CoMo/Al2O3 catalyst with a titanium compound added exhibited the highest activity enhancement for HDS and HDM reactions. It was also found that the surface activity maintenance can be effectively improved by the addition of an appropriate amount of titanium compound. The activity and stability of CoMo and NiMo catalysts for the HDS and HDM reactions were also compared.  相似文献   

14.
The characterization of various spent Ni(Co)MoP/Al2O3 catalysts has been performed in order to elucidate the active phase modifications undergone on the catalysts at operating conditions. Six catalysts coming either from industrial or pilot reactors were studied. The deactivation level (for hydrogenation reaction) can be determined by XPS analysis quantifying the ‘Ni(Co)MoS’ mixed phase amount. The spent catalyst active phases characteristics, at different levels of deactivation, firstly evidenced that the coke particularly influences the CoMo active phase (X-ray photoelectron spectroscopy) lowering the ‘CoMoS’ mixed phase amount. On the spent NiMo catalysts, most of the nickel is segregated (XPS, Extended X-ray Absorption Fine Structure, Transmission Electronic Microscopy/Energy Dispersive Spectroscopy) even after low residence time in the unit (pilot plant origin). In both cases it leads to the progressive deactivation of the catalyst. The coke does not seem to influence the ‘NiMoS’ mixed phase amount excepted at its life-end.  相似文献   

15.
High surface area (>300 m2 g−1) nano-structured TiO2 oxides (ns-T) were used as CoMo hydrodesulfurization catalyst support. Cylindrical extrudates were impregnated by incipient wetness with Mo (2.8 Mo at. nm−2) and Co (atomic ratio Co/(Co + Mo) = 0.3). Characterization of impregnated precursors was carried out by N2 physisorption, XRD and atomic absorption and laser-Raman spectroscopies. Sulfided catalysts (400 °C, H2S/H2) were studied by X-ray photoelectronic spectroscopy. As indicated by XRD and after various preparation steps (extrusion, Mo and Co impregnation and sulfiding) the nano-structured material was well preserved. XPS analyses showed that Co and Mo dispersion over the ns-T support was much higher than that on alumina. Very high surface S concentration suggested that even ns-T was partially sulfided during catalyst activation. Dibenzothiophene hydrodesulfurization activity (5.73 MPa, 320 °C, n-hexadecane as solvent) of CoMo/ns-T was two-fold to that of an alumina-supported commercial CoMo catalyst. The improvement was even more remarkable in intrinsic pseudo kinetic constant basis. No important differences in selectivity over the catalysts supported on either Al2O3 or ns-T were observed, where direct desulfurization to biphenyl was favored. Both Mo dispersion and sulfidability were enhanced on the ns-T support where Mo4+ fraction was notably increased (100%) as to that found on CoMo/Al2O3.  相似文献   

16.
寸文娟  宁平 《云南化工》2006,33(4):23-25
研究了负载于γ-A l2O3上的Fe、Co、N i与Mo形成的双组分过渡金属氧化物上CO对SO2催化还原。考察了不同组分配比、不同反应温度、不同反应物配比以及不同空速下的活性。结果表明,双组分Fe系过渡金属氧化物对CO还原SO2反应具有很好的催化活性,催化活性顺序为CoMoγ/-A l2O3>FeMoγ/-A l2O3>N iMoγ/-A l2O3。配比为w(Co)=15%,w(Mo)=5%时活性最佳,在反应气体配比为m(CO)∶m(SO2)=2∶1,空速为3600mL/(h.g),温度在400℃时,SO2转化率达到最大值74.8%。  相似文献   

17.
Mixed oxides as a support for new CoMo catalysts   总被引:5,自引:0,他引:5  
Interest in bifunctional catalysts, active in reactions such as hydrodesulphurisation (HDS) of hydrocarbon fractions, is growing in the last years. An improvement of CoMo/Al2O3 materials can be obtained by the introduction of other oxides during the sol–gel synthesis. This heavily affects the acid–base characteristics of the catalysts, while textural properties are less influenced. The catalytic performances change as well: a relationship between the density of acid sites and HDS activity has been found.  相似文献   

18.
The effect of citric acid (CA) addition was studied on the HDS of thiophene over Co–Mo/(B)/Al2O3 catalysts. The catalysts were characterized by means of LRS, Mo K-edge EXAFS, NO adsorption capacity measurements, and UV–vis spectra. The catalysts were subjected to a chemical vapor deposition (CVD) technique using Co(CO)3NO as a precursor of Co in order to get deeper insights into the effect of citric acid addition. It was shown that the HDS activity was enhanced by the citric acid addition up to the CA/Mo mole ratio of around 1 and leveled off with further addition. The amount of Co anchored by the CVD was increased by the addition of citric acid, suggesting an increase in the dispersion of MoS2 particles on the catalyst by the simultaneous presence of Co, Mo and citric acid, in conformity with the increase in the NO adsorption capacity. In contrast to Co–Mo catalysts, the edge dispersion of MoS2 particles in Mo/B/Al2O3 was not affected by the addition of citric acid. The LRS, UV–vis spectra and Mo K-edge EXAFS showed that Co–CA and Mo–CA surface complexes are formed by the addition of citric acid. The Co–CA surface complex is more preferentially formed on CoMo/Al than on CoMo/B/Al, in agreement with a greater promoting effect of citric acid at a lower CA/Mo mole ratio for CoMo/Al than for CoMo/B/Al.  相似文献   

19.
The applicability of four catalyst with different composition (conventional and new generation CoMo/Al2O3, new composition Pt,Pd/USY, Pt/H-Mordenite) catalysts was investigated for selective desulphurization of different sulphur containing FCC gasolines. The new generation CoMo/Al2O3 and the new composition Pt,Pd/USY were found to have favourable hydrodesulphurisation activity. The reactions of some C5-C6 olefin and aromatic hydrocarbons are discussed under the conditions of deep desulphurisation, highlighting the effects of that on the octane number.  相似文献   

20.
Water formed during hydrotreating of oxygen-containing feeds has been found to affect the performance of sulphided catalysts in different ways. The effect of water on the activity of sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts in hydrodeoxygenation (HDO) of aliphatic esters was investigated in a tubular reactor by varying the amount of water in the feed. In additional experiments, H2S was added to the feed, alone and simultaneously with water.

Under the same conditions, the NiMo catalyst exhibited a higher activity than the CoMo catalyst. The ester conversions decreased with increase in the amount of added water. When H2S and water were added simultaneously, the conversion increased to the same level as without water addition on the NiMo catalyst and reached a higher value on the CoMo catalyst. The conversions were highest, however, when only H2S was added. Unfortunately, the conversions decreased with time under all conditions. On both catalysts, the total yield of the C7 and C6 hydrocarbons decreased with the amount of added water, while the concentrations of the oxygen-containing intermediates increased. The presence of H2S improved the total hydrocarbon yield and shifted the main products towards the C6 hydrocarbons. Thus, the addition of H2S effectively compensated the inhibition by water.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号