首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
本文主要围绕碳纤维复合材料(CFRP)与2024Al的连接件,研究低温环境下螺栓连接的拉-拉疲劳问题。首先进行不同环境下的拉伸实验,从中获得最大静力载荷,并通过静载破坏曲线探究不同温度下异质材料连接层合板接头的损伤过程,通过观察不同温度下的拉伸破坏现象,对比复合材料层合板纤维分层与撕裂程度,以此为依据研究低温环境对异质材料螺栓连接疲劳的影响,选用不同温度分组的层合板接头分别在各自85%、80%、75%的最大静载条件下进行常温与低温疲劳实验,实验结果拟合常温与低温下的S-N曲线。结果表明,在其他实验条件相同时,低温环境下层合板接头拉伸破坏强度相比于常温环境增强。分析疲劳曲线得出低温环境下层合板接头受疲劳载荷能力更强。  相似文献   

2.
为研究拉伸载荷下碳纤维/环氧树脂层合板的疲劳性能,开展了4种应力水平下的T300/6511碳纤维平纹织物层合板的拉-拉疲劳实验,得到了不同应力水平下层合板的疲劳寿命。采用超声波C扫和扫描电子显微镜(SEM)观察断口形貌及内部损伤,讨论复合材料疲劳损伤发展积累过程和断裂机理。通过复合材料疲劳有限元分析模型,模拟了复合材料织物层合板疲劳损伤积累和失效过程,绘制了S-lg N曲线,分析发现模型预测的疲劳寿命及失效模式与实验结果吻合良好。疲劳加载时,层合板两侧自由边的表面首先出现基体开裂和分层损伤,随后诱发基体与纤维间界面破坏,损伤加剧,并迅速向内侧扩展;最后大量纤维和基体断裂,损伤贯穿整个截面,导致疲劳断裂。  相似文献   

3.
复合材料开孔层压板的疲劳特性是复合材料耐久性/损伤容限研究的一项重要内容。本文对碳纤维增强树脂基复合材料开孔层压板在低温环境下的疲劳特性进行了研究,选取两种铺层的T300级复合材料开孔层压板进行室温和低温环境拉-拉疲劳试验,获取了不同环境的疲劳门槛值、S-N曲线和剩余强度,并给出了一种低温S-N曲线估算方法。研究表明:T300级复合材料典型铺层开孔层压板在室温和低温环境均具有很高的疲劳门槛值;开孔层压板低温环境的静力环境因子与疲劳环境因子从工程应用角度可以认为是相同的,只需要进行常温环境的开孔层压板疲劳试验获取常温疲劳门槛值,并结合静力试验获取的静力环境因子,便可预测开孔层压板的低温疲劳门槛值,从而避免了低温疲劳试验带来的巨大经济成本;当T300级复合材料开孔层压板在室温和低温环境下经历不高于疲劳门槛值的疲劳载荷时,通常会出现疲劳后的剩余强度比静强度提高的现象,但对T700级和T800复合材料某些情况下并不会出现这种现象。  相似文献   

4.
本文研究了T700/MTM46复合材料层合板在高应力水平下的拉-拉疲劳性能。首先开展了层合板静拉伸试验研究,得到了静拉伸强度、模量和破坏应变,各项静力性能指标分散性小,静力破坏模式以小范围内的脆性断裂为主。然后根据得到的静强度确定疲劳应力水平,开展层合板拉-拉疲劳性能试验研究,各应力水平下疲劳寿命分散性大,且并没有随应力水平高低表现出规律性;疲劳破坏模式以分层失效为主,几乎整个工作段长度内都出现了严重的分层现象;疲劳应力水平越高,破坏时刚度下降程度越小,且归一化刚度退化曲线表现出"快-慢-快"三阶段性;疲劳过程中损伤起源于90°层,且在疲劳过程中该层内的损伤扩展最为严重,0°层的损伤出现最晚,但是0°层纤维断裂预示着即将发生灾难性的疲劳破坏。  相似文献   

5.
设计制备了两种4轴向碳纤维无屈曲织物(NCF):第一种织物全部采用东丽公司T700 12k碳纤维,第二种织物中66.7%碳纤维采用国产CCF300 3k碳纤维(与东丽T300 3k碳纤维相当)。对该两种织物层合板0°、90°和±45°4个方向的抗拉伸、抗弯曲和抗层间剪切性能进行了测试与对比研究。结果表明:在现有生产条件下,国产CCF300 3k碳纤维最多可以代替4轴向NCF中66.7%的进口T700 12k碳纤维;国产碳纤维NCF层合板各方向归一化后的抗拉伸强度比进口碳纤维NCF层合板低18.7%~26.1%,而其他性能没有显著差别;两种NCF层合板的抗拉伸和抗层间剪切破坏模式相似。  相似文献   

6.
研究了T700/3234层合板力学性能,T700/3234层合板铺层45°/-45°/0°/90°/0°/0°/90°/0°/-45°/45°.T700/3234中温固化环氧碳纤维单向预浸料适应于热压罐成型工艺方法.测试了23℃、60℃、80℃、100%下,T700/3234层合板拉伸性能、压缩性能、弯曲性能、层间剪切强度及层合板的拉伸剪切强度,得出不同温度下层合板各项力学性能的保持率,表明:T700/3234复合材料使用温度不大于80℃.  相似文献   

7.
碳纤维树脂基复合材料(CFRP)层合板的疲劳性能决定了结构的安全性和可靠性。其寿命预测的研究具有重要的工程意义。依据碳纤维复合材料拉压疲劳试验标准,对含孔国产碳纤维CCF300/QY8911复合材料进行了5个不同应力水平下拉压疲劳试验,分析了疲劳试样断口,表征了中央含孔国产碳纤维CCF300/QY8911复合材料在疲劳载荷作用下的破坏过程,获得含孔复合材料层合板的条件疲劳极限,在此基础上,建立了复合材料的S-N曲线。利用该曲线可对中央含孔复合材料进行疲劳寿命预测。10^6下的条件疲劳极限为平均应力的48%(即150.3MPa)。  相似文献   

8.
采用有限元分析比较了碳纤维复合材料层合板之间铆胶连接的主要承力方式,并对铆胶连接方式做了静力拉伸试验、盐雾试验与疲劳试验,结果表明:金属-层合板铆胶连接的拉剪强度总是高于层合板-层合板铆胶连接拉剪强度;金属-层合板铆胶连接的拉剪强度高于层合板-层合板的拉剪强度12.6%;盐雾试验结果与静力拉伸试验结果倾向性一致,整体来说层合板-层合板铆胶连接受盐雾条件影响较小;疲劳试验结果证明铆胶连接不易发生疲劳损坏。  相似文献   

9.
分别用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)以及接触角测量仪分析了国产MT700C碳纤维和东丽T700SC两种碳纤维的表面微结构、表面化学特性以及与树脂的浸润性,并对其环氧树脂复合材料MT700C/603和T700SC/603在干态和湿态下的界面性能进行了研究。结果表明,MT700C碳纤维表面O/C比和活性碳原子含量比T700SC碳纤维高,并且表面具有明显的沟槽,因此MT700C与树脂的浸润性好于T700SC碳纤维,可以与603树脂形成具有良好界面粘结的MT700C/603复合材料。在室温干态条件下,MT700C/603复合材料的层间剪切强度(ILSS)大于T700SC/603复合材料。但是在湿热老化环境中,T700SC/603复合材料最终的剪切强度保留率大于MT700C/603复合材料。  相似文献   

10.
为了研究湿热环境对碳纤维/环氧树脂(CFRP)复合材料抗冲击性能的影响,对碳纤维/环氧复合材料层合板进行70℃水浴处理,采用锥头圆柱形弹体对湿热饱和试样和干燥室温试样进行速度分别为45 m/s、68 m/s、86 m/s的冲击,采用激光测速仪测量冲击前后的速度,然后采用超声C扫描检测系统、超景深三维显微系统、扫描电镜(SEM)等方法对试样的冲击破坏进行检测。实验结果表明:随着冲击速度的增加,试样的破坏投影面积增加;在速度较低时,湿热环境对碳纤维/环氧树脂层合板的损伤孔洞面积影响更大;湿热处理之后的碳纤维/环氧树脂层合板层间性能明显降低。  相似文献   

11.
The effect of temperature on the tensile and fatigue strength of vibration‐welded and unwelded postindustrial waste nylon 6 reinforced with 30 wt% glass fiber (PIWGF) was experimentally examined, and the results were compared to those obtained from a 30 wt% glass fiber reinforced prime nylon 6 compound (PAGF) from a previous study. Fatigue tests were performed under sinusoidal constant amplitude tension‐tension load at a stress ratio of R = 0.1 and within the frequency range of 2–10 Hz at temperatures from 24 to 120°C. Stress levels from just under the tensile strength down to the run‐out point at 5 million cycles were used. It was found that increasing temperature led to a significant decrease in both tensile strength and fatigue life. For PIWGF, there was ~20% strength reduction under both static tensile and cyclic loading as compared to PAGF. For both welded and unwelded PIWGF, the endurance ratio; i.e., the ratio of fatigue strength to static tensile strength, was ~45% regardless of the temperature. The fatigue notch factor (Kf) was between 1.4 and 1.8 for all test temperatures examined. POLYM. ENG. SCI., 55:799–806, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
In this study, the mechanical response of hybrid titanium composite laminates (HTCL) was evaluated at room and elevated temperatures. Also, the use of an elastic-plastic laminate analysis program for predicting the tensile response from constituent properties was verified. The improvement in mechanical properties achieved by the laminates was assessed by comparing the results of static strength and constant amplitude fatigue tests with those for monolithic titanium sheet. Two HTCL were fabricated with different fiber volume fractions, resin layer thicknesses and resins. One panel was thicker and was poorly bonded in comparison with the other. Consequently, the former had a lower tensile strength, while fewer cracks grew in this panel and at a slower rate. Both panels showed an improvement in fatigue life of almost two orders of magnitude. The model predictions were also in good agreement with the experimental results for both HTCL panels.  相似文献   

13.
In this study, the mechanical response of hybrid titanium composite laminates (HTCL) was evaluated at room and elevated temperatures. Also, the use of an elastic-plastic laminate analysis program for predicting the tensile response from constituent properties was verified. The improvement in mechanical properties achieved by the laminates was assessed by comparing the results of static strength and constant amplitude fatigue tests with those for monolithic titanium sheet. Two HTCL were fabricated with different fiber volume fractions, resin layer thicknesses and resins. One panel was thicker and was poorly bonded in comparison with the other. Consequently, the former had a lower tensile strength, while fewer cracks grew in this panel and at a slower rate. Both panels showed an improvement in fatigue life of almost two orders of magnitude. The model predictions were also in good agreement with the experimental results for both HTCL panels.  相似文献   

14.
Fatigue behavior of carbon fiber reinforced poly(etheretherketone)(PEEK) laminates was investigated. The static tensile measurement, tension-tension fatigue loading tests, and residual tensile strength measurement of the [0/45/90/-45]2s AS-4/PEEK laminates were performed at various levels of stress amplitudes. The influences of stress amplitude on the fatigue life and the residual tensile strength were investigated. The experimental results for fatigue life and residual tensile strength under different stress amplitudes are analyzed by the median rank method. The S-N curves at various survival probabilities are also presented by the pooled Weibull distribution function. Furthermore, a residual strength degradation model is used to predict the residual strength for the composites subjected to a number of fatigue cycles and to simulate the effects of the stress amplitude on the fatigue life. The agreement between experiment and theory is good.  相似文献   

15.
《Ceramics International》2016,42(6):6850-6857
The fatigue behavior of plain-weave Cf/C–SiC composites prepared by liquid silicon infiltration (LSI) was studied under cyclic tensile stress at room temperature. The specimens were loaded with stress levels of 83% and 90% of the mean static tensile strength for 105 cycles. The cross-sections and fracture surfaces of the fatigued specimens were examined by optical microscopy (OM) and scanning electron microscopy (SEM), respectively. The results show that the specimens can withstand 105 fatigue cycles with a stress level of 90% of the static tensile strength. The retained strengths after fatigue for 105 cycles with stress levels of 83% and 90% are about 19% and 11% higher than the static tensile strength. Due to the observation of the microstructures a relief of the thermal residual stress (TRS) caused by stress-induced cracking is probably responsible for the enhancement. Furthermore, the fracture surfaces indicate that the fatigue stress results in interfacial debonding between the carbon fiber and matrix. Additionally, more single-fiber pull out was observed within the bundle segments of fatigued specimens.  相似文献   

16.
The influence of the porosity on the static mechanical strength of the carbon fiber fabric reinforced epoxy composites laminates was investigated. The tensile, compressive, bending, and interlaminar strength test on the CFRP laminates with porosity of 0.33% and 1.50% were conducted and simulated by a finite element analysis model. The article proposes the failure criterion of the static mechanical strength of the fabric fiber reinforced composites based on the improved Hashin failure criterion that is suitable for the undirectional composite laminates. The basic composite strength parameters are used to evaluate the mechanical properties of CFRP laminates with different porosities. A finite element analysis model is established by using software ABAQUS™ combined with the sudden stiffness degradation model. The experiment results show that the tensile, compressive, bending, and interlaminar strength decrease with the increasing porosities. The tensile, compressive, bending, and interlaminar strength of the fabric carbon fiber reinforced epoxy composites laminates are simulated accurately by the finite element model. POLYM. COMPOS., 14–20, 2016. © 2014 Society of Plastics Engineers  相似文献   

17.
The failure mechanisms of Oxide-Oxide ceramic matrix composites AS-N610 were studied at both room temperature and high temperature using tensile and fatigue tests with and without lateral and laminar notches. The unnotched coupons had an average tensile strength of 423 MPa with elastic modulus of 97 GPa at room temperature showing a perfect elastic behaviour whereas the laminar notched samples shown similar strength of 425 MPa with elastic modulus (98 GPa) revealing pseudo-ductile behaviour. A reduction in tensile strength of the oxide ceramic matrix composites was observed at high temperatures. Thermal shock experiments revealed that the retained strength of the samples quenched from 1100 °C deteriorated by ~10 % (395 ± 15 MPa). In all samples, fracture origin was observed on the mid-plane showing a higher degree of fiber pull-out, delamination and pseudo ductile behaviour. Finite element analysis confirmed higher stress concentration on the areas of failures.  相似文献   

18.
This paper investigates the interfacial, tensile, and fatigue properties of a novel smart fiber‐metal laminate (FML) based on a nickel‐titanium (Ni‐Ti) shape memory alloy and a woven glass fiber reinforced epoxy. Initial tests, using the single cantilever beam (SCB) geometry, have shown that this unique system offers high values of metal‐composite interfacial fracture toughness. Tensile tests have shown that the mechanical properties of these FMLs lie between those offered by its constituent materials and that their tensile modulus and strength can be easily predicted using a rule of mixtures approach. Tension‐tension fatigue tests have shown that the fatigue performance of notched smart FMLs is superior to that offered by the plain Ni‐Ti alloy. A subsequent optical examination of unnotched laminates tested to failure under tension‐tension fatigue loading has shown that the fracture mechanisms occurring within the Ni‐Ti FMLs are strongly dependent on the applied cyclic stress. POLYM. COMPOS., 28:534–544, 2007. © 2007 Society of Plastics Engineers  相似文献   

19.
Fiber-reinforced ceramic matrix composites (CMCs) exhibit excellent thermo-mechanical properties including outstanding resistance against damage and fatigue. Some CMCs show occasionally even a strength enhancement after fatigue, often interpreted with relieve of internal stresses and interfacial degradation. This study reports the influence of low-cycle thermo-mechanical preloading on the bending and tensile strength of carbon fiber-reinforced silicon carbon (C/C-SiC). For this purpose two C/C-SiC materials with the same fiber architecture but different assumed internal stress states were subjected to single and cyclic mechanical preloads up to 90% of their ultimate strength level at room temperature and at 350 °C. Statistical evaluations of the experiments show that the ultimate strength values were surprisingly unchanged after preloading. The results are discussed regarding the thermal residual stresses (TRS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号