共查询到16条相似文献,搜索用时 62 毫秒
1.
2.
提出一种多特征融合和带宽自适应均值偏移跟踪算法。基于M-估计器建立位置和带宽关于完整参数型带宽矩阵的迭代更新公式。分析权值图像的本质,基于灰度和局部标准差建立融合权值图像。通过先前目标模板模型和确定的目标模型的平均值生成当前目标模板模型。在位置向量的迭代公式中,采用扩大的带宽矩阵,确保定位精度。为防止由于背景杂波导致带宽膨胀或者由于目标自我相似导致带宽收缩,引入规范准则。跟踪的视觉结果和评估尺度表明,提出的跟踪算法相比于另外三种尺度自适应均值偏跟踪算法,具有最好的性能。 相似文献
3.
Mean-Shift算法自从提出以来得到较广泛的应用和发展,但是传统的MS算法对于在视频中大小变换的和移动速度非常快的目标,将不能进行准确的跟踪.为了解决这个问题,已有将卡尔曼预测和MS相融合进行预测跟踪的算法.但是当物体在视频中的尺寸变化的时候,由于不变的核带宽,会产生由背景产生的误差,同样导致跟踪的失败.为此,本文... 相似文献
4.
提出了一种结合连续自适应均值漂移(Camshift)与卡尔曼(Kalman)滤波的目标跟踪算法,针对目标受干扰情况,对两种算法的跟踪结果进行线性的加权,从而得到目标的最终位置。实验结果显示,该方法具有良好的目标跟踪效果,且具有很强的稳健性。 相似文献
5.
为达到同时提取图像的主要边缘和微弱边缘并有效抑制噪声的目的,该文利用真实图像边缘两侧的灰度渐变性,以及边缘点周围灰度梯度的方向一致性好而非边缘点周围灰度梯度的方向一致性差的特点构造了梯度方向和(SGD)指标;并根据该指标提出一种阈值自适应的边缘检测算法。实验表明:梯度方向和在有效提取边缘点的同时能较好地抑制高强噪声;该指标对光照和对比度变化有较强的鲁棒性;将其用于阈值的自适应调节,得到的基于梯度方向一致性的边缘检测方法能较好地解决兼顾弱边缘检测的同时而不引入噪声干扰的问题。 相似文献
6.
带宽自适应Mean Shift跟踪算法 总被引:2,自引:0,他引:2
提出了一种先进行空间定位再确定目标尺度的两级跟踪算法,有效地解决了mean shift算法对尺度变化的适应问题.该算法首先在当前帧对应位置进行降分辨率处理,并以基于增量试探的mean shift跟踪算法收敛点作为当前帧目标中心位置,进而利用对数极坐标变换的旋转、尺度不变性,对目标和候选目标分别进行对数极坐标映射,并通过求取最大归一化相关函数确定目标的尺度变化.跟踪实验表明,该算法可以有效的提高mean shift跟踪算法空间和尺度定位准确性. 相似文献
7.
改进算法通过计算跟踪窗口颜色直方图的质心来自适应的调整跟踪窗口的尺寸,通过比较跟踪结果和目标的差值确定遮挡情况,并启用粒子滤波算法在整幅图像内搜索目标解决目标的遮挡问题,这种改进算法克服了均值滤波算法不能适应目标尺寸变化和不能解决遮挡问题的缺点.实验证明改进算法具有很强的鲁棒性. 相似文献
8.
鉴于高斯拉普拉斯(LoG)算子具有各向同性且在有方向性差异的场合并不适应的不足,提出在梯度方向进行零交叉的边缘检测方法。首先使用自适应平滑滤波原图像;然后在水平和垂直两个方向上分别计算图像的一阶梯度分量;使用梯度算子分别对两个求得的一阶梯度分量进行操作,计算两方向上的二阶偏导数;分别对两个方向上的二阶偏导数进行零交叉检测,并合并零交叉点得到边缘图像;最后使用形态学图像处理方法去除边缘图像中面积较小的孤立点区域。结果表明,该方法在噪声环境中具有良好的边缘检测效果,且运算时间与LoG算子检测方法相当。 相似文献
9.
针对传统均值漂移算法利用固定核或对称核函数进行目标跟踪时出现目标跟踪丢失或跟踪失败的问题,提出了基于各向异性核函数的自适应带宽均值漂移目标跟踪算法,以提高目标跟踪的准确性、实时性.在符号距离核函数的基础上引入符号距离约束函数,构成各向异性核函数,满足目标外部的区域函数值为零,为目标跟踪提供准确的跟踪窗.依据基于各向异性核函数的均值漂移应用到目标跟踪中需满足跟踪窗内的样本点到中心点的向量权重之和为0的思想,计算各向异性核函数模板的均值漂移窗口中心.利用相似度阈值对前后两帧目标模板的变化情况进行限制,实现各向异性核函数模板的自适应更新及目标的准确实时跟踪.实验结果表明所提出算法的准确性和实时性较高. 相似文献
10.
在复杂的海天背景下,现有红外小目标检测算法存在虚警率高的问题,文中深入分析目标和背景的特征差异,首先,提出了一种基于灰度差和梯度方向一致性的方法,增强了小目标并抑制了部分背景杂波,其次,结合特征分解法进一步抑制了锐利边缘背景,最后,采用自适应阈值分离出小目标。实验结果表明,与五种现有算法相比,所提出的检测算法能够在不同复杂场景都有效降低虚警率,大大提升信杂比(SCR)和背景抑制因子(BSF),并且具有良好的鲁棒性。 相似文献
11.
12.
针对传统均值漂移(mean-shift)算法存在 对目标 特征描述不完整、目标模型不能动态更新、无法解决目标遮挡 等问题, 本文提出多特征自适应均值漂 移算法的目标跟 踪。首先利用人体躯干侧影改进模型核函数,采用目标颜色特征与纹理特征建立目 标直方图模型,提高算法对目标描 述能力;提出选择性模型更新策略,自适应地调整目标模型,改善了传统整体更新策略由于 过度更新导致的跟踪发散;最后 利用扩展卡尔曼滤波 (EKF,extend Kalman filter) 提取目标运动特征确定目标位置。与传统算法相比,本文所提算法能在背景 干扰条件下准确跟踪目标;同时, 图像处理平均速度 达140frame/s ,满足实时性要求。实验结果表明,本文算法可以实时准确地 跟踪目标,对环境干扰、目标遮挡具有鲁棒性。 相似文献
13.
14.
15.
基于均值漂移和粒子滤波的红外目标跟踪 总被引:4,自引:1,他引:4
为了提高红外目标跟踪的准确性和稳健性,提出了基于均值漂移(mean shift)和粒子滤波(PF)相结合的红外目标跟踪方法.在PF理论框架下,使用均值漂移为一种迭代模式寻找过程,对随机粒子样本进行重新分配,使粒子向目标状态的最大后验核密度估计方向移动,在均值漂移迭代过程中对样本权值进行更新.红外目标的状态后验概率分布用重新分配的加权随机样本集表示,对随机样本集使用PF算法实现红外目标运动的跟踪.实验结果表明,和一般PF和均值漂移相比,本文方法具有优越性和更强的稳健性. 相似文献
16.