首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以聚酰亚胺(PI)纤维为前驱体,经800~2800℃连续高温处理,制备出不同性能的聚酰亚胺基炭(石墨)纤维。采用元素分析、SEM、HR-TEM、Raman、纤维强力仪、电阻率仪等分析手段研究热处理温度对炭纤维(CF)元素含量、结构形貌、力学性能、传导性能等方面的影响。结果表明,随着热处理温度的升高,聚酰亚胺基炭纤维中碳含量从78.97%(800℃)提高到99.72%(2 800℃),非碳原子含量降低;聚酰亚胺基炭纤维表面缺陷数目增加且尺寸增大。同时,纤维的微观结构也从二维乱层石墨结构向有序的三维层状结构发展,表现为石墨化程度的提高及石墨微晶尺寸的增大;炭纤维拉伸强度先增加后降低,最大拉伸强度924.4 MPa,断裂伸长率降低,电阻率减小,热导率增加,2 800℃石墨化处理后纤维热导率为228.4 W·m-1·K-1,是800℃处理后的50.4倍。  相似文献   

2.
利用改进Hummers法制备氧化石墨烯,通过"grafting to"法接枝到用硅烷偶联剂Kh550处理的碳纤维表面,从而获得碳纤维/氧化石墨烯多尺度增强体。通过扫描电镜(SEM)、透射电镜(TEM)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和红外光谱(IR)对获得的多尺度碳纤维的形貌、结构和表面官能团进行了表征,并利用纤维电子强力仪和电阻率仪研究了接枝前后碳纤维力学性能和传导性能的变化。结果表明,氧化石墨烯主要接枝在碳纤维表面的沟槽和缺陷处,碳纤维表面不饱和碳原子数目增加,微晶尺寸减小,接枝后碳纤维的拉伸强度提高了9.8%,断裂伸长率提高了13.1%,而其电导率降低了11.6%。  相似文献   

3.
利用改进Hummers法制备氧化石墨烯,通过"grafting to"法接枝到用硅烷偶联剂Kh550处理的碳纤维表面,从而获得碳纤维/氧化石墨烯多尺度增强体。通过扫描电镜(SEM)、透射电镜(TEM)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和红外光谱(IR)对获得的多尺度碳纤维的形貌、结构和表面官能团进行了表征,并利用纤维电子强力仪和电阻率仪研究了接枝前后碳纤维力学性能和传导性能的变化。结果表明,氧化石墨烯主要接枝在碳纤维表面的沟槽和缺陷处,碳纤维表面不饱和碳原子数目增加,微晶尺寸减小,接枝后碳纤维的拉伸强度提高了9.8%,断裂伸长率提高了13.1%,而其电导率降低了11.6%。  相似文献   

4.
采用静电纺丝技术制备了氧化石墨烯(GO)不同含量的聚酰亚胺/氧化石墨烯(PI/GO)复合纳米纤维膜,并研究其结构、表面润湿性、热氧化特性、力学性能和过滤性能。结果表明,添加GO有利于纳米纤维的直径分布趋于均匀,在GO用量为0.5%(wt,质量分数)条件下,PI/GO复合纳米纤维膜平均纤维直径最小为(231±36)nm,孔隙率高达89.61%,拉伸强度为14.43MPa,杨氏模量为1.36GPa,断裂伸长率为10.84%,热氧化稳定性较纯PI纳米纤维膜提高了15℃,过滤效率最高达到96.5%,较纯PI纳米纤维膜提高了8%。添加GO能有效提高PI/GO复合纳米纤维膜的疏水性、力学性能及热氧化稳定性。  相似文献   

5.
石墨化聚酰亚胺条带可作为连接石墨烯的桥梁,形成大尺度石墨烯复合薄膜。采用opt-Tersoff分子力场和非平衡分子动力学方法,计算研究了石墨烯和石墨烯/聚酰亚胺复合膜热导率的尺寸效应。结果发现,石墨烯的热导率与模型的长度相关,增加聚酰亚胺条带的数目或宽度可提高石墨烯/聚酰亚胺复合膜的导热性能,而增加聚酰亚胺条带的长度作用不大。另外,计算了声子态密度用于解释复合膜结构引起的热导率差异。  相似文献   

6.
以对苯二胺(PDA)和联苯四甲酸二酐(BPDA)为单体,合成了聚酰亚胺前驱体——聚酰胺酸溶液。采用溶液共混法将氧化石墨烯与聚酰胺酸复合,经制膜和热酰亚胺化反应制备了石墨烯/聚酰亚胺复合薄膜。用红外光谱(FT-IR)、拉曼光谱(Raman)、X射线衍射(XRD)和扫描电镜(SEM)对复合材料的结构和形态进行了分析。发现被还原的氧化石墨烯已经充分剥离并均匀分散在聚酰亚胺基体中,且与基体树脂结合紧密。力学性能测试表明,石墨烯的加入明显改善了聚酰亚胺的拉伸强度,当石墨烯含量为2%时,复合材料的拉伸强度提高了53%。热失重分析发现,复合薄膜的热稳定性也得到明显改善,相对于纯的聚酰亚胺,添加2%石墨烯的复合材料其热降解温度提高了10℃。  相似文献   

7.
以天然鳞状石墨为原料,采用化学氧化法合成氧化石墨烯,与脱胶后的蚕丝丝素蛋白按比例混合后通过真空抽滤构建1%,5%和10%(质量分数)不同丝素含量的氧化石墨烯/丝素蛋白复合薄膜,并通过EDC/NHS进行化学共价键交联,最后采用氢碘酸对复合薄膜进行还原进而得到具有优良力学特性的"砖-泥"层状结构的无机/有机复合薄膜。研究分析了薄膜的亲疏水性、力学性能、形貌、结构与体内生物相容性。研究结果表明,丝素组分的添加与共价键化学交联作用不仅改善了复合薄膜的亲水性及力学性能,也增加了复合薄膜的体内生物相容性。这种基于石墨烯/丝素蛋白复合薄膜有望作为生物材料支架应用于组织工程与再生医学领域。  相似文献   

8.
采用氧化石墨烯还原法制备了石墨烯(GR),同时采用混酸酸化法处理多壁碳纳米管(MWCNTs),以1%(wt,质量分数,下同)的GR和不同含量的酸化MWCNTs作为填料,通过超声搅拌分散-原位聚合法制得抗静电碳系/聚酰亚胺(GR-MWCNTs/PI)复合薄膜,并对复合薄膜的抗静电性能、热稳定性和力学性能进行表征。结果表明,2种碳系材料的添加可明显提高薄膜的导电性、机械性能和抗静电的效果,导电填料的添加对薄膜的热稳定性影响不大,在GR含量为1%,MWCNTs含量为2%时,在560℃时失重率约35%,电阻率为4.44×107Ω·cm,拉伸强度达到88.0MPa,断裂伸长率达到16.23%,拉伸强度和断裂伸长率分别比纯聚酰亚胺提高了122.4%和128.6%。  相似文献   

9.
石墨烯/氧化石墨烯-聚乳酸的制备与表征   总被引:5,自引:5,他引:0  
通过优化Hummers法制备了氧化石墨烯,并用水合肼还原法制备了石墨烯,且对自制的石墨烯和氧化石墨烯进行了测试及分析;然后通过溶液插层法制得纳米级聚乳酸/石墨烯和聚乳酸/氧化石墨烯复合材料,并对其分散性、热学性能以及力学性能进行了分析。对石墨烯和氧化石墨烯的表征结果说明,水合肼可以还原氧化石墨,所制备的石墨烯纯度较高。对聚乳酸/石墨烯和聚乳酸/氧化石墨烯复合材料的性能分析结果表明,在聚乳酸的结晶度、结晶速率和对聚乳酸的结晶成核上,石墨烯比氧化石墨烯具有更优异的表现,但在热稳定性能方面,氧化石墨烯比石墨烯优异;在力学性能方面,有增强和降低两种影响,添加少量氧化石墨烯时聚乳酸的力学性能降低,而含质量分数为0.5%的石墨烯复合材料在拉伸实验和冲击实验中的增强效果较为明显。  相似文献   

10.
以鳞片石墨为原料采用Hummers法制备氧化石墨烯。以石墨烯掺杂的气相生长碳纤维(VGCF)、中间相沥青(MP)为原料,经低温热模压、炭化、石墨化处理制备高强度、高密度的石墨烯掺杂气相生长碳纤维中间相沥青基复合材料。采用扫描电子显微镜来观察样品的微观形貌;通过强力机、四探针测试仪等表征复合材料的性能。结果表明,随着石墨烯掺杂量的增加,复合材料的抗弯强度及导电性能先增大后减小。当石墨烯掺杂比例为9.09%时,炭化后复合材料的密度为1.646g/cm~3,抗弯强度为85.7MPa,电阻率为1.27×10~(-5)Ω·m。  相似文献   

11.
宋洪松  杨程  刘大博 《功能材料》2012,43(9):1185-1188
通过Staudenmaier法制备了完全氧化的氧化石墨(GO),并通过高温热膨胀制备了单层石墨烯(graphene)。用FT-IR和TG对GO的氧化程度、含氧官能团进行了表征,用SEM和TEM对天然石墨(NG)、GO和graphene的微观结构进行了分析。利用超声共混法制备了graphene/环氧树脂介电纳米复合材料,介电性能的测试表明,graphene的加入使环氧树脂介电常数大幅提高,当graphene添加量为0.25%(质量分数)时,材料介电常数达到25,是纯环氧树脂的4倍,介电损耗0.11。这为石墨烯在介电储能方面的应用和低成本介电复合材料的制备提供了新思路。  相似文献   

12.
采用水热还原法将羧基化多壁碳纳米管(MWCNTs—COOH)接枝到氧化石墨烯(GO)上,经冷冻干燥得到三维石墨烯-多壁碳纳米管气凝胶(GA-MWCNTs),再以热塑性聚氨酯(TPU)为填充体,通过真空浸渍法制得三维石墨烯-多壁碳纳米管/热塑性聚氨酯(GA-MWCNTs/TPU)复合材料。借助FTIR、Raman、XPS、TEM、SEM,对GA-MWCNTs的化学结构、微观形貌进行表征,并通过TGA-DSC、电阻测量仪和力学试验机,分析MWCNTs—COOH质量分数对GA-MWCNTs/TPU复合材料性能的影响。结果表明:MWCNTs—COOH在GO片层间起到交联和支撑作用,形成了蜂窝状三维网络结构,其孔径约为1.2 mm;当MWCNTs—COOH质量分数(以120 mg GO为基准)为10wt%时,GA-MWCNTs/TPU复合材料的导电性、热稳定性、力学性能均得到改善,相比于GA/TPU,体积电阻率降低了63.0%、热分解温度提高了7℃、30%应变下的应力提高了8.2%。   相似文献   

13.
通过简单的机械共混(球磨共混)和高温压制的方法,制备了一系列具有良好抗原子氧(AO)性能的氧化石墨烯/聚酰亚胺(GO/PI)复合薄膜。微量(0.5wt%) GO的引入可使GO/PI复合薄膜的抗AO性能提高17.9%。同时,含0.5wt% GO的GO/PI复合薄膜也表现出良好的热稳定性能和力学性能。热重分析表明,含0.5wt% GO的GO/PI复合薄膜在质量损失为5%时的温度(Td5)为519.4℃,比纯PI薄膜高14.7℃;拉伸强度为111.9 MPa,杨氏模量为2.1 GPa,与纯PI薄膜相比,分别提高了4.3 MPa和0.1 GPa。与传统的原位聚合法相比,机械共混-高温压制的方式更易于操作和控制,使具有优异综合性能的GO/PI复合薄膜的大规模量产成为可能。  相似文献   

14.
以石墨粉为原料,采用改进的Hummers法制备氧化石墨烯(GO),采用原位聚合法制备GO/聚酰亚胺酸(PAA)前驱体,GO/PAA前驱体经高温固化处理后得到GO/聚酰亚胺(PI)复合薄膜;采用XRD、Raman、FTIR、AFM等表征手段对GO的结构进行表征;此外,研究了不同固化温度下PI薄膜的结构;最后测试了GO/PI复合薄膜的透湿率和力学性能。结果表明:GO为单层结构,厚度为1.26 nm。GO/PI复合薄膜表现出良好的阻水性能,当GO/PI复合薄膜中GO的添加量为0.025wt%、薄膜厚度为50 μm时,GO/PI复合薄膜的透湿率低至56.7 g(m2·d)-1。此外,0.025wt% GO/PI复合薄膜拉伸强度和断裂伸长率分别为150.8 MPa和13.5%,与PI薄膜(分别为126.9 MPa和8.1%)相比,分别增加了18.8%和66.7%。   相似文献   

15.
本研究模拟细胞外基质成分与结构, 采用静电纺丝法成功制备出明胶/壳聚糖/羟基磷灰石/氧化石墨烯四元复合纤维。重点考察该体系中物质浓度对复合纤维形貌及抗菌性能的影响。结果表明: 明胶浓度增大会增大纤维的直径, 但浓度过大会出现粘连现象, 其最佳浓度为15~20%; 加入壳聚糖(CS)会出现细纤维分支, 其浓度为1%左右较佳; 增加羟基磷灰石(HA)浓度, 可提高电纺液的导电性, 降低纤维中的珠状物和粘联现象发生, 粒径为12 μm的HA浓度为5%时纤维形态较好; 加入氧化石墨烯后可使纤维形态均匀、光滑。最后对四元复合纤维进行了抗菌性能考察, 发现氧化石墨烯的加入增强了复合纤维的抗菌性。明胶/壳聚糖/羟基磷灰石/氧化石墨烯四元复合纤维对金黄色葡萄球菌和大肠杆菌均具有较好的抗菌效果。  相似文献   

16.
以纳米纤维素(CNF)为分散介质,氧化石墨烯(GO)为增强介质,多壁碳纳米管(MWNT)为导电介质,机械搅拌后真空抽滤制备CNF/GO/MWNT复合薄膜,研究GO/MWNT含量对复合薄膜性能的影响,采用红外、Raman光谱、扫描电镜、透射电镜对薄膜的结构和形貌进行表征,采用动态力学分析、热重分析和电导率测试研究薄膜的力学性能、热性能和电性能。结果表明,薄膜的拉伸强度随GO含量的增加先增加后减小,薄膜电导率和耐热性随MWNT用量增加而增加,当CNF/GO/MWNT质量比为20/10/70时,复合薄膜性能最佳,薄膜的电导率达到236.07 S/m,拉伸强度为25.13 MPa,180~300℃区间材料的热失重为9.45%,最大热分解速率对应温度达到322.69℃。扫描电镜、透射电镜结果表明,GO在材料内部呈现规整结构,CNF能有效分散GO/MWNT,形成均匀分散液。  相似文献   

17.
以丁腈橡胶(NBR)与聚氨酯(PU)为共混基体,添加氧化石墨烯(GO)或片状石墨(G)通过热压成型工艺合成GO/NBR-PU和G/NBR-PU三元体系复合材料,借助DMA、FTIR、SEM等手段,研究氧化石墨烯与片状石墨对NBR-PU共混物动态力学性能的影响。研究结果表明,GO加入后,损耗角正切值(tanδ)、损耗模量(E″)以及储能模量(E′)随着GO含量的增加先增加后减小,当GO含量达到临界值(与NBR质量比为3%)时,其动态力学性能tanδ、E″及E′表现出较好的性能;而添加片状石墨时,NBR-PU共混物的阻尼性能和力学性能均有一定的增强,但随着含量进一步增加,阻尼性能与力学性能有所下降。通过微观分析发现,GO的增强作用主要是因为界面效应,而无论是氧化石墨烯或是片状石墨,在基体中均有很强的团聚作用,而性能下降的主要原因就是其团聚作用。  相似文献   

18.
Epoxy acrylate (EA) composites containing graphite oxide (GO), graphene and nitrogen-double bond functionalized graphite oxide (FGO) were fabricated using UV-radiation and electron beam radiation via in-situ polymerization. Graphene and FGO were homogenously dispersed in EA matrix and enhanced properties, including thermal stability, flame retardancy, electrical conductivity and reduced deleterious gas releasing in thermo decomposition were obtained. Microscale combustion colorimeter results illustrated improved flame retardancy; EA/FGO composites achieved a 29.7% reduction in total heat release (THR) when containing only 0.1% FGO and a 38.6% reduction in peak-heat release rate (PHRR) when containing 3% FGO. The onset decomposition temperatures were delayed and the maximum decomposition values were reduced, according to thermogravimetric analysis which indicated enhanced thermal stabilities. The electrical conductivity was increased by 6 orders of magnitude (3% graphene) and the deleterious gas released during the thermo decomposition was reduced with the addition of all the graphite samples. This study represented a new approach to functionalize GO with flame retardant elements and active curable double bond to achieve better dispersion of GO into polymer matrix to obtain nanocomposites and paved a way for achieving graphene-based materials with high-performance of graphene in enhancement of flame retardancy of polymers for practical applications.  相似文献   

19.
热处理条件对氧化石墨结构和导电性能的影响   总被引:6,自引:3,他引:6  
氧化石墨是石墨的氧化产物.由于它的碳层表面引入了很多极性功能团,使得很多分子都能够嵌入其层间形成纳米复合物,但也正是这些功能团使得它散失了石墨良好的导电性。为了考察氧化石墨受热处理后还原的可能性,通过X-射线衍射、扫描电镜、红外光谱分析以及元素分析等手段研究了氧化石墨在不同热处理条件下的结构变化。研究发现热处理时的升温速度对氧化石墨的结构影响很大,快速升温时,氧化石墨迅速分解,发生膨胀形成类似于膨胀石墨的含有丰富的50nm至5μm左右孔洞的一种结构;而当缓慢升温时,氧化石墨随着热处理温度的升高,逐渐恢复成类似于石墨的结构,同时电导率也随热处理温度的升高而提高,当热处理温度高于180℃时,电导率大于1S/cm。这些结果表明利用氧化石墨作为前驱体,通过先制备聚合物/氧化石墨纳米复合物后经热处理来得到导电性的聚合物/碳纳米复合材料是可行的。  相似文献   

20.
陈元庆  张大伟  顾继友 《材料导报》2015,29(12):71-74, 95
以壳聚糖为基体、氧化石墨烯为活性增强相,采用溶液复合的方法制备了氧化石墨烯/壳聚糖纳米复合材料。为使氧化石墨烯均匀地分散在壳聚糖溶液中,对氧化石墨烯的表面进行了功能化处理。通过TEM、SEM、XRD、TGA和力学实验对氧化石墨烯的分散性,复合材料的结晶性能、热性能和力学性能进行了分析。研究结果表明,表面处理后的氧化石墨烯均匀分散于壳聚糖溶液中,未出现絮凝和团聚现象,复合材料中氧化石墨烯也以层片堆叠的方式存在。复合材料中壳聚糖基体的结晶峰位置和结晶度不随氧化石墨烯的加入而改变。复合材料的杨氏模量随着氧化石墨烯含量的增加而提高,断裂伸长率随氧化石墨烯含量增加而降低;当氧化石墨烯含量达到5%(质量分数)后,材料由韧性变为脆性,强度降低。复合材料的热稳定性随着氧化石墨烯含量的增加而提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号