首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
粒子浓度对C/C复合材料烧蚀行为的影响   总被引:1,自引:0,他引:1  
为研究不同粒子浓度侵蚀条件下C/C复合材料的烧蚀机理及性能,采用自主研发的氧-煤油烧蚀实验系统对轴棒法编织的C/C复合材料进行烧蚀/侵蚀实验,实验的粒子浓度分别为0,1.37%,2.22%,2.64%。采用扫描电镜(SEM)观察实验后试样的微观形貌,测算了试样的烧蚀率,研究了粒子浓度对材料烧蚀率的影响规律,分析了材料的烧蚀机理。结果表明:不加粒子时试样的质量烧蚀率仅为0.159g/s,线烧蚀率为0.175mm/s,加入粒子后质量烧蚀率与线烧蚀率的最小值分别为0.432g/s和0.843mm/s,且随粒子浓度的增加,烧蚀率均加速增加。粒子的侵蚀作用加剧了试样的烧蚀,冲刷面上径向纤维的烧蚀梯度随粒子浓度的增加而增大。  相似文献   

2.
以酚醛树脂为基体,以平纹碳布和短切碳纤维两种结构形式的碳纤维为增强剂,制备碳纤维增强的碳/酚醛复合材料。采用氧/乙炔烧蚀实验对复合材料的耐烧蚀性能进行了对比性研究,采用电子拉力试验机对复合材料的弯曲性能进行表征,采用扫描电镜对复合材料烧蚀形面进行观察,并通过固体火箭发动机对复合材料的烧蚀性能进行考核验证。研究结果表明:以这两种结构形式的碳纤维为增强剂制备的碳/酚醛复合材料,其氧乙炔质量烧蚀率的大小与碳纤维丝束的大小具有正相关的特性,碳纤维丝束越小碳纤维质量烧蚀率越低,当碳纤维增强剂处于单丝状态时,复合材料的氧乙炔质量烧蚀率达到最低为0.046 g/s,并且碳纤维的型号规格对复合材料氧乙炔质量烧蚀率的影响变小。固体火箭发动机实验表明,单丝状态下的碳纤维/酚醛复合材料的抗烧蚀冲刷性能明显优于束状碳纤维/酚醛复合材料。  相似文献   

3.
C/C复合材料烧蚀性能的研究进展   总被引:2,自引:0,他引:2  
张红波  尹健  熊翔 《材料导报》2005,19(7):97-99,103
C/C复合材料是一种良好的抗烧蚀和耐高温热结构材料,广泛应用于航天航空等领域.综述了C/C复合材料烧蚀性能的测试方法、烧蚀机理、烧蚀模型以及抗烧蚀的研究状况.  相似文献   

4.
通过对热化学烧蚀机制的分析,利用有限元方法分析了热化学烧蚀、烧蚀表面退缩及温度场耦合作用下C/C复合材料的烧蚀性能变化规律.采用虚拟失效、重新构建网格部件的方法实现烧蚀表面的退缩,建立了烧蚀表面退缩下瞬态温度场的有限元模型.运用热化学烧蚀理论求解了进入材料内部的净热流和烧蚀率.烧蚀表面退缩后变得不规则,通过编程校正了重新加载热流时不规则表面出现局部热流偏大的现象.结果表明,随着烧蚀时间的增加,进入材料内部的热流达到动态的平衡,材料的烧蚀是多种因素综合作用的结果,通过耦合计算可以真实反映材料的烧蚀特性.  相似文献   

5.
C/C复合材料的热化学烧蚀和温度场耦合分析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对热化学烧蚀机制的分析, 利用有限元方法分析了热化学烧蚀、 烧蚀表面退缩及温度场耦合作用下C/C复合材料的烧蚀性能变化规律。采用虚拟失效、 重新构建网格部件的方法实现烧蚀表面的退缩, 建立了烧蚀表面退缩下瞬态温度场的有限元模型。运用热化学烧蚀理论求解了进入材料内部的净热流和烧蚀率。烧蚀表面退缩后变得不规则, 通过编程校正了重新加载热流时不规则表面出现局部热流偏大的现象。结果表明, 随着烧蚀时间的增加, 进入材料内部的热流达到动态的平衡, 材料的烧蚀是多种因素综合作用的结果, 通过耦合计算可以真实反映材料的烧蚀特性。  相似文献   

6.
采用电弧驻点烧蚀试验方法测试了具有典型光滑层和粗糙层热解炭结构的两种C/C复合材料的烧蚀率,研究了热解炭结构对C/C复合材料烧蚀性能的影响.结果表明:热解炭结构对C/C复合材料烧蚀性能有较大的影响.具有粗糙层结构的C/C复合材料石墨化度高,不同炭结构之间结合好,线烧蚀率和质量烧蚀率较小,烧蚀性能较好;具有光滑层结构的C/C复合材料石墨化度低,烧蚀性能较差.  相似文献   

7.
C/C-Cu复合材料等离子体烧蚀性能   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究渗铜对C/C复合材料烧蚀性能的影响,利用化学气相渗透(CVI)和液态压力浸渗工艺制备了C/C-Cu复合材料,并采用等离子体烧蚀装置对C/C-Cu复合材料进行烧蚀,研究其烧蚀性能。结果表明: Cu的加入有效缩短了材料的制备周期;Cu均匀分布在C/C坯体内,呈连续的网状结构;在烧蚀前30 s阶段,Cu通过熔化吸热降低了C/C-Cu试样的升温速度,C/C-Cu复合材料的线烧蚀率低于C/C复合材料,耐烧蚀性能优异;随着烧蚀时间的延长,C/C-Cu复合材料表层的Cu液被火焰带走,表层变为多孔低密度的C/C层,C/C-Cu复合材料的线烧蚀率迅速增加并超过C/C复合材料,耐烧蚀性能降低。  相似文献   

8.
C/C复合材料烧蚀性能分析   总被引:36,自引:6,他引:30       下载免费PDF全文
阐述了C/C复合材料性能的优越性及烧蚀机理,并建立了剥蚀机理的物理模型;讨论了环境影响和表面粗糙度的生死循环,并且分析了C/C的机械剥蚀和热化学烧蚀,得到了一些启示。这为热防护领域做了些有益的探讨。   相似文献   

9.
烧蚀产物ZrO2对ZrC改性C/C复合材料烧蚀的影响   总被引:1,自引:1,他引:1  
采用ZrOCl2溶液浸渍法把含锆组元引入碳纤维预制体, 结合热梯度化学气相渗透、高温石墨化工艺制备了ZrC改性C/C复合材料. 用氧乙炔烧蚀测试材料的烧蚀性能, XRD测试材料烧蚀前后的物相组成, 采用SEM观察材料的微观形貌. 烧蚀结果表明:随着烧蚀次数的增加, 若每次烧蚀后不去除ZrO2, 材料的线、质量烧蚀率呈先增加后减小的趋势, 最后趋于稳定; 若每次烧蚀后去除ZrO2, 材料的线、质量烧蚀率均呈增大的趋势. 产物ZrO2的蒸发吸收了材料烧蚀表面的热量, 减缓了火焰对烧蚀表面的冲蚀, 材料的线烧蚀率减小, 然而, ZrO2的蒸发会增加材料的质量损失速度, 导致材料的质量烧蚀率增大.  相似文献   

10.
采用ZrOCl2溶液浸渍法把含锆组元引入碳纤维预制体, 结合热梯度化学气相渗透、高温石墨化工艺制备了ZrC改性C/C复合材料. 用氧乙炔烧蚀测试材料的烧蚀性能, XRD测试材料烧蚀前后的物相组成, 采用SEM观察材料的微观形貌. 烧蚀结果表明:随着烧蚀次数的增加, 若每次烧蚀后不去除ZrO2, 材料的线、质量烧蚀率呈先增加后减小的趋势, 最后趋于稳定; 若每次烧蚀后去除ZrO2, 材料的线、质量烧蚀率均呈增大的趋势. 产物ZrO2的蒸发吸收了材料烧蚀表面的热量, 减缓了火焰对烧蚀表面的冲蚀, 材料的线烧蚀率减小, 然而, ZrO2的蒸发会增加材料的质量损失速度, 导致材料的质量烧蚀率增大.  相似文献   

11.
采用超声波真空浸渍-碳热还原法将ZrB2引入碳纤维预置体,结合热梯度化学气相渗透、高温石墨化工艺制备了ZrB2改性C/C复合材料.氧-乙炔烧蚀测试结果表明,添加了6.87 wt%ZrB2后,C/C复合材料的线烧蚀率和质量烧蚀率分别下降了64.9%和67.5%.分析表明,C/C复合材料的烧蚀主要是由热化学和热物理反应控制,机械剥蚀在烧蚀过程中仅起到次要作用.烧蚀产物ZrO2/B2O3在烧蚀过程中的挥发会带走大量的热,从而减少了烧蚀火焰对烧蚀表面的热冲击.  相似文献   

12.
烧蚀条件对混合基体C/C复合材料烧蚀性能的影响   总被引:1,自引:0,他引:1  
采用电弧驻点烧蚀技术,在不同焓值、驻点压力和烧蚀时间条件下对混合基体C/C复合材料的烧蚀性能进行了研究,结果表明:电弧驻点烧蚀条件下,混合基体C/C复合材料的烧蚀以机械剥蚀为主;焓值增加、驻点压力提高、烧蚀时间延长,烧蚀率增加.C/C复合材料的烧蚀性能对驻点压力十分敏感,当压力提高一倍时,材料烧蚀率将成倍增长;质量烧蚀率与驻点压力和气流焓值的关系为:mt=0.0034·H1.0663S·P1.8270S.  相似文献   

13.
采用基体改性技术将ZrC引入C/C复合材料中,制备了一种新型的C/C—ZrC复合材料。通过氧乙炔焰烧蚀实验,研究了ZrC含量及烧蚀时间对C/C—ZrC复合材料高温耐烧蚀性能的影响。用XRD和TEM对烧蚀后材料的相组成和微观结构进行了分析,结果表明,ZrC被氧化的主要生成物为ZrO2,伴有少量ZrC和C,含26.46%ZrC的C/C—ZrC复合材料,在氧乙炔焰烧蚀50s后,在材料表面生成致密的ZrO2膜,阻挡了氧对基体的扩散,并有隔热作用,有效保护复合材料被烧蚀和冲刷。实验表明,复合材料在高温氧乙炔焰烧蚀20s后,线烧蚀率和质量饶蚀率分别为0.012mm/s和0.0033g/s,比C/C复合材料分别降低7.6%和50%。  相似文献   

14.
采用化学气相渗透(CVI)结合溶液浸渍法制备3D-C/SiC-(W-C)多元基复合材料,利用XRD、SEM技术对材料烧蚀前后的物相组成及微观结构进行表征,并讨论了复合材料的烧蚀性能.结果表明,3D-C/SiC-(W-C)复合材料的主要成分为WC、W、SiC和C,而烧蚀表面的主要成分为WO3、w和SiC.W-C不仅渗入纤维束间,还渗入到纤维束内.制得的C/SiC-(W-C)复合材料密度为3.3g/cm3,开气孔率为11%,其线烧蚀率和质量烧蚀率分别为4.3×10-2mm/s和7.2×10-3g/s.  相似文献   

15.
将SiC纤维毡与C纤维毡交替层叠, 通过针刺工艺制备(C-SiC)f/C预制体, 采用化学气相渗透与前驱体浸渍裂解复合工艺(CVI+PIP)制备(C-SiC)f/C复合材料, 研究(C-SiC)f/C复合材料H2-O2焰烧蚀性能。利用SEM、EDS和XRD对烧蚀前后材料的微观结构和物相组成进行分析, 探讨材料抗烧蚀机理。结果表明: (C-SiC)f/C复合材料表现出更优异的耐烧蚀性能。烧蚀750 s后, (C-SiC)f/C复合材料的线烧蚀率为1.88 μm/s, 质量烧蚀率为2.16 mg/s。与C/C复合材料相比, 其线烧蚀率降低了64.5%, 质量烧蚀率降低了73.5%; SiC纤维毡在烧蚀中心区表面形成的网络状保护膜可以有效抵御高温热流对材料的破坏; 在烧蚀过渡区和烧蚀边缘区形成的熔融SiO2能够弥合材料的裂纹、孔洞等缺陷, 阻挡氧化性气氛进入材料内部, 使材料表现出优异的抗烧蚀性能。  相似文献   

16.
陶瓷前驱体配比对C/C-ZrC-SiC复合材料烧蚀性能的影响   总被引:3,自引:3,他引:0  
采用聚碳硅烷和有机锆聚合物混合前驱体,通过反复浸渍裂解工艺制备了C/C-ZrC-SiC复合材料,分析了材料的组成与结构,研究了不同陶瓷前驱体配比对材料烧蚀性能的影响。结果表明,复相陶瓷基体由大量ZrC颗粒均匀弥散分布在连续SiC相中组成。随着ZrC含量的增加,C/C-ZrC-SiC复合材料的烧蚀率呈现先减小后增大的趋势。当聚碳硅烷与有机锆聚合物的配比(质量比)为1∶3时,ZrC体积含量约为13.3%,氧乙炔烧蚀600s后,C/C-ZrC-SiC复合材料的线烧蚀率和质量烧蚀率降至最低,分别为-0.0015mm/s和0.0002g/s。研究发现,高温氧化环境中,形成了粘稠的ZrO2-SiO2玻璃态氧化膜,有效降低了氧化性气氛向材料内部扩散的速率,对材料基体形成了较好的保护。  相似文献   

17.
18.
为了研究碳/碳 (C/C) 复合材料在再入弹头上的应用性能, 以某型弹头的设计战标为研究背景, 根据朗金—雨贡纽 (Rankine-Hugoniot) 关系式和再入飞行的相似性原理, 对C/C复合材料进行地面再入模拟烧蚀试验;测量C/C复合材料的烧蚀性能, 并观察其微观形貌的变化;根据试验结果, 对C/C复合材料在再入飞行时的烧蚀机理进行分析;进而对再入弹头防热层的质量进行理论估算。结果表明, C/C复合材料在再入飞行时的烧蚀是由热氧化反应和机械剥蚀共同作用的结果, 驻点区的线烧蚀率约为0.0615 mm/s;圆锥体区的线烧蚀率约为0.0402 mm/s;由试验结果获得了C/C复合材料在再入环境中的烧蚀规律曲线;根据试验结果计算再入弹头防热层的理论质量, 并与在役弹头防热层的质量相比较, 节省了约8.6 kg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号