共查询到18条相似文献,搜索用时 156 毫秒
1.
制备超顺磁性Fe_3O_4纳米粒子的研究进展 总被引:3,自引:0,他引:3
对超顺磁性Fe3O4纳米粒子的制备方法进行总结,目前常用的方法有共沉淀法、水热法、水解法、微乳液法及溶胶-凝胶法,并讨论了这些方法的优缺点,同时提出了制备Fe3O4纳米粒子的一种新方法——微波水热法。这种方法能够在最短的时间内制备出超顺磁性Fe3O4纳米粒子,并且是制备高纯度、小粒径、均匀分散的超顺磁性Fe3O4纳米粒子最佳方法。最后对超顺磁性Fe3O4纳米粒子的应用及其发展趋势做简单的介绍,对其进一步的研究进行展望。 相似文献
2.
3.
4.
为了研究Fe3O4形貌与其复合材料电磁吸收性能之间的关系,采用水热法制备了微粒和棒状两种形貌的Fe3O4与石墨烯复合材料。利用X射线衍射(XRD)仪、透射电子显微镜(TEM)和矢量网络分析仪(VNA)对复合材料的结构、形貌以及电磁吸收性能进行了表征。结果表明,纳米Fe3O4棒/石墨烯复合材料相比纳米Fe3O4粒子/石墨烯具有更优异的电磁吸收性能,其在8~18GHz范围内小于-10dB频带宽9.8~17.9GHz,说明材料的微波吸收性能和纳米粒子的形貌有关。 相似文献
5.
采用溶剂热一步法制备氨基功能化纳米Fe_3O_4磁性复合材料(NH_2-nFe_3O_4)。通过EA、XRD、FTIR、TEM、VSM等手段对NH_2-nFe_3O_4进行组成、结构、形貌、磁性等表征,并研究其吸附和降解水中五氯酚(PCP)污染物的性能。结果表明:NH_2-nFe_3O_4平均粒径约为20nm,饱和磁化强度为56.8emu/g;对PCP的等温吸附线符合Freundlich模型,当PCP的初始浓度为1 000mg/L时,吸附容量(q)可达899.2mg/g。吸附动力学研究表明,吸附过程可在5min内达到平衡,符合准二级动力学模型;将吸附PCP后的NH2-nFe_3O_4加入Fe~(3+)-H_2O_2体系,采用类Fenton反应可以实现PCP在可见光下原位降解。在pH值为3.0~8.0、5 min内对固载量为6.25~120.0mg/g的PCP实现近100%降解,较普通Fenton反应体系有更宽的pH适用范围。且NH_2-nFe_3O_4可循环使用,是具有优异潜力的水中PCP绿色吸附与降解材料。 相似文献
6.
为了实现海水中2,4,6-三氯苯酚(2,4,6-TCP)的选择性吸附和去除,采用超声协助悬浮聚合法以2,4,6-三氯苯酚为模板制备了分子印迹氨基功能化纳米Fe3O4高分子磁性复合材料(nFe3O4@MIPNH2-polymer)。通过元素分析(EA)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱分析、透射电子显微镜(TEM)、振动样品磁强计(VSM)等手段对nFe3O4@MIPNH2-polymer的组成、结构、形貌、磁性等进行表征,并研究了其应用于吸附和去除海水中2,4,6-三氯苯酚(2,4,6-TCP)污染物的性能。结果表明:合成的nFe3O4@MIPNH2-polymer平均粒径约为800nm,饱和磁化强度为32.6emu·g-1;水溶液中2,4,6-TCP的饱和吸附量为105.26mg·g-1,高于非分子印迹氨基功能化纳米Fe3O4高分子磁性复合材料(nFe3O4@NH2-polymer)的饱和吸附量(76.92mg·g-1),nFe3O4@MIPNH2-polymer对2,4,6-TCP的等温吸附线大体符合Langmuir模型。吸附热力学研究表明,nFe3O4@MIPNH2-polymer对2,4,6-TCP的吸附过程是自发的吸热熵增过程;吸附过程可在5min内达到平衡,动力学数据和准二级动力学模型符合较好;其吸附过程去除2,4,6-TCP的活化能为78.0kJ·mol-1。海水中的共存物质对吸附2,4,6-TCP几乎无干扰,nFe3O4@MIPNH2-polymer经洗脱后可以循环使用5次以上。nFe3O4@MIPNH2-polymer能高选择性地有效去除海水中的2,4,6-TCP。 相似文献
7.
在碱性条件下,以共沉淀法合成Fe3O4,再以正硅酸乙酯和二乙烯三胺为原料,制备出Fe3O4复合材料(Fe3O4-SiO2-NH2)。采用FT-IR、VSM和SEM对其结构进行表征,并研究了复合材料对Cd2+的吸附性能。实验结果表明,在T=55℃、t=60 min、Cd2+溶液的初始浓度为100 mg·L-1、Fe3O4-SiO2-NH2的添加量为0.1 g时,该材料对Cd2+的吸附容量为71.4 mg·g-1。其吸附动力学行为更符合准二级动力学,热力学更适合用Langmuir等温吸附模型描述。Fe3O4-SiO2-NH2吸附Cd2+后洗脱再生,经过5次循环使用后,其对Cd2+的去除率仍然大于70%。 相似文献
8.
采用原位化学沉淀法将Fe3O4与石墨复合,研究了不同复合比例对吸波性能的影响。结果表明:随着Fe3O4负载量的增加,复合材料中Fe3O4的X射线衍射峰增强;Fe3O4主要沉积在石墨表面,随着Fe3O4负载量的增加,对石墨表面的包覆越完整,但也有一些Fe3O4纳米颗粒散落在石墨颗粒之间;复合材料的介电常数随Fe3O4负载量的增大而减小,磁导率变化较小;在Fe3O4与石墨不同质量比复合材料中,质量比为5∶1和4∶1的复合材料表现出较好的吸波效果,在厚度为1.5mm时,质量比为5∶1样品吸收峰值达-31.9dB,大于-10dB的吸收频带宽为5.0GHz。 相似文献
9.
为解决磁性纳米Fe3O4易被腐蚀、团聚等问题,可对其进行功能化修饰。在超声波辐照下首先制备磁性纳米Fe3O4颗粒,然后选用2,5-二氨基苯磺酸(SP)和间苯二胺(mPD)单体为引入剂进行功能化修饰,制备得到富含氨基、磺酸基和亚氨基活性官能团的金属基复合材料Fe3O4-mPD/SP(95∶5),并采用FTIR、TEM、XRD等手段对其进行表征,证实了超声波辐照法制得的磁性纳米复合材料具有稳定性好、反应活性高、粒径小和比表面积更大等特点。同时考察其对Pb(II)的吸附性能,结果表明:mPD和SP摩尔比、溶液pH值、竞争性阳离子种类和反应温度等因素均会影响吸附效果;等温吸附过程符合Freundlich模型,吉布斯自由能?G0<0,吸附是一个自发过程;Pb(II)的吸附行为符合准二级动力学,速率常数k2=3.61×10-3 g·mg-1·min-1,平衡吸附量qe=63.297 mg·g 相似文献
10.
目前,以纳米Fe3O4制备Fe3O4/聚乙烯醇(PVA)磁性复合材料的相关报道较少。在共沉淀法中引入柠檬酸根来控制Fe3O4微晶的生长,同时分散Fe3O4使其形成胶体,成功制备了纳米Fe3O4粉末,并以PVA为载体,制备了纳米Fe3O4/PVA磁性复合膜,研究了制备的纳米Fe3O4粉末及Fe3O4/PVA复合膜的组织结... 相似文献
11.
用化学共沉淀法制备Fe3O4,用静电吸附法制备Fe3O4@Au复合磁性纳米材料,用种子生长法制备出Fe3O4@Au@Ag复合磁性纳米材料。利用紫外一可见吸收光谱研究复合磁性纳米颗粒的光谱特性,以结晶紫为探针分子检测磁性纳米颗粒的表面增强拉曼散射光谱。实验结果表明:复合磁性纳米颗粒既具有磁性又具有贵金属光谱特性;复合磁性纳米颗粒能很好地改善Fe3O4磁性纳米颗粒的表面增强拉曼散射活性。 相似文献
12.
采用乙酰丙酮铁作为有机前驱体盐,在二苄基醚溶液中,以油酸、油胺为表面活性剂,十六醇作为“分解促进剂”,分解前驱体乙酰丙酮铁,制备四氧化三铁纳米颗粒。以四氧化三铁纳米颗粒为“种子”,加入醋酸银,以油胺为还原剂,制备Fe3O4/Ag复合磁性纳米材料。利用透射电子显微镜对纳米材料的形貌进行了表征,通过紫外~可见吸收光谱和拉曼光谱仪对纳米材料的表面增强拉曼散射光谱进行表研究,采用铷硼磁铁对磁性纳米材料的磁性进行初步研究。实验结果表明:FelO2/Ag复合磁性纳米颗粒既具有磁性又具有贵金属光谱特性;相对Fe304而言,Fe3O4/Ag复合纳米粒子具有更好的s隙S增强效果。 相似文献
13.
14.
在十六烷基三甲基溴化胺(CTAB)存在下,采用原位化学氧化聚合法制备了聚苯胺/Fe3O4网状磁性纳米复合材料,通过改变Fe3O4纳米粒子在聚苯胺(PAn)中的含量获得了电磁性能可调的纳米复合物,采用FT—IR、XRD、SEM、TEM、电导和磁性能测试对复合物进行了表征,通过矢量网络分析仪获得了试样在2—18GHz范围的复介电常数和复磁导率,经计算获得微波反射损耗曲线,发现当样品中Fe3O4的含量为15.8wt%时,在9.0GHz处具有最大的反射损耗-17.1dB,损耗起.过-10dB的频宽为1GHz。 相似文献
15.
以聚乙二醇为引发剂,L-丙交酯为单体,开环聚合得到聚乳酸-聚乙二醇三嵌段共聚物(PLLA-PEG-PLLA),采用溶剂挥发法制备了PLLA-PEG-PLLA/Fe_3O_4磁性微球,并通过扫描电镜对其形态进行了表征。利用振动样品磁强计和Tg研究了微球的磁含量和磁性能,结果发现,相同粒径不同磁含量的磁性微球,磁含量越高,升温速率越快,当磁含量为70.57%时,升温速率最快,能达到磁热疗的有效温度42℃。对于磁含量相同,粒径不同的微粒,粒径越小,升温速率越快,粒径约为10μm时升温速率最快。 相似文献
16.
17.
磁性壳聚糖纳米粒子可用于药物载体及废水处理吸附剂。以化学共沉淀法制备Fe3O4纳米粒子,壳聚糖先进行羧甲基化改性,再经碳二亚胺活化,包履在Fe3O4颗粒表面,透射电镜(TEM)表明,Fe3O4纳米粒子被CMC包履,粒径约10nm;X射线衍射(XRD)分析表明复合纳米粒子中磁性物质为Fe3O4;傅立叶红外光谱(FTIR)表明壳聚糖发生羧甲基反应;磁性测试表明,Fe3O4/CMC具有超顺磁性,饱和磁化强度25.73emu/g,且有良好的磁稳定性。 相似文献
18.
反相乳液法制备单分散性Fe3O4微粒的研究 总被引:1,自引:2,他引:1
为制备单分散性的Fe3O4微粒,采用反相乳液法,以Fe2 与Fe3 按n(Fe2 ):n(Fe3 )=1:2配成的水溶液作为水相,十二烷基磺酸钠为乳化剂,液体石蜡和水溶液形成油包水型乳液,用NaOH共沉淀.实验考察了油/水体积比、搅拌速度、乳化剂及碱用量、乳化时间的影响.结果表明,较佳的条件是:在V(石蜡):V(水)=6:1,1030r/min的搅拌速度下,乳化剂的量为4.5g/L,乳化20min后,用超过理论用量5%的氢氧化钠共沉淀.用粒度仪和磁天平表征所得Fe3O4,数均粒径为2μm,98%的粒径分布在1~5μm,质量磁化率为2.60×10-2emu/g. 相似文献