首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
探索了奥氏体晶粒尺寸对珠光体等温转变组织特征以及对韧性性能的影响规律。研究表明,在相同等温转变温度下,珠光体片层间距无明显变化,随奥氏体晶粒尺寸的增加,先共析铁素体量减少而珠光体团尺寸增加。珠光体断裂韧性受控于裂纹前沿塑性影响区尺寸(1~2)δc,其中δc为临界裂纹张开位移,当原奥氏体晶粒大于(1~2)δc时,裂纹扩展阻力主要来自穿越珠光体片层α、θ相的颈缩、破断。当原奥氏体晶粒尺寸接近或小于(1~2)δc时,裂纹主要沿晶界、珠光体团界、α+θ片层界面扩展,通过扩展路径发生多次弯折消耗能量,随原奥氏体晶粒尺寸增加,准静态断裂韧度J变化幅度较小。而冲击韧性缺口前沿塑性影响区远大于原奥氏体晶粒,大角度晶界将促使裂纹的转折而提高扩展阻力,提高裂纹前沿塑性区大角度晶界密度有利于提高冲击功,冲击韧性Ak随晶粒尺寸的增加显著下降。  相似文献   

2.
为探究珠光体降低高碳高锰钢机械性能的原因,本文采用金相组织分析、机械性能测试和断口微观形貌分析等实验方法,研究了奥氏体基体上含体积分数23%珠光体的ZG120Mn13高碳高锰钢的拉伸性能及其裂纹形核和扩展过程.结果表明:通过时效处理,在奥氏体基体上析出的条状、颗粒状以及沿晶界连续分布的珠光体将使ZG120Mn13钢的强度和塑性大幅度下降.机械性能的降低与其力学行为有关,当基体为单一奥氏体时,裂纹将在大量孪生变形后,在孪晶界、孪晶与晶界交界处形核,并沿孪晶界长大而相互连接、扩展.而奥氏体基体上存在珠光体时,裂纹主要在珠光体团内形核,并通过相邻珠光体间奥氏体的塑性耗竭、切断而得以扩展.  相似文献   

3.
研究了应变速率对奥氏体不锈钢Cr17Mn6Ni4Cu2N铸坯热塑性的影响。结果表明,壳层的微观组织为δ铁素体树枝品分布在奥氏体晶粒内部,提高应变速率会降低其热塑性,并使裂纹形核位置由δ铁索体树枝品处变为奥氏体晶界处;在芯部铁素体分布在奥氏体晶粒内部及晶界上,提高应变速率会提高其热塑性,且裂纹的形核位置由晶界铁素体处变为晶界铁素体和奥氏体晶界处。在高应变速率下变形,铁素体和奥氏体的强度均提高,并使它们之间的强度差别减小,导致裂纹形核位置由铁索体向奥氏体晶界转移。在壳层,较高的应变速率提高了奥氏体晶界处的应力集中,导致其塑性降低;在芯部,较高的应变速率降低了铁素体处的应力集中,使其热塑性提高。  相似文献   

4.
通过断口分析讨论了TC4-DT钛合金裂纹扩展的微观机制。从微裂纹的形成,疲劳裂纹初期、近门槛区以及稳态区的扩展,分析了不同组织形态的TC4-DT钛合金对应的裂纹扩展微观机制。分析结果表明,对于片层组织,循环载荷的作用导致断裂表面粗糙及塑性变形过程中相界面产生位错塞积而诱使裂纹萌生。等轴组织变形过程中晶粒产生的断裂表面成为裂纹的萌生源。在近门槛区,等轴组织变形过程中位错累积将导致沿晶界的开裂,从而加速裂纹扩展;双片层组织由于次生α相的尺寸效应会加速裂纹扩展。在稳态扩展区,断口表面由第Ⅰ阶段的锯齿状断裂模式过渡到辉纹断裂模式,表现为塑性条带断裂机制。  相似文献   

5.
利用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及拉伸和冲击试验等方法研究了V(0.03%-0.12%)(质量分数,下同)、Si含量(0.32%-0.89%)对中碳(0.54%)珠光体车轮钢显微组织及力学性能的影响。结果表明:提高V含量细化了实验钢的奥氏体晶粒尺寸、珠光体团尺寸及其片层间距,并且提高了铁素体体积分数。随着V含量的提高,由于VC沉淀强化和细化晶粒的作用,室温屈服强度和-20℃冲击韧性得到改善;但软相(先共析铁素体)增多,室温抗拉强度降低。提高Si含量显著降低了铁素体体积分数和细化了珠光体片层间距,略细化奥氏体晶粒和珠光体团尺寸;Si也促进VC的析出但作用很小。Si主要以固溶强化和细化片层间距的方式提高屈服强度和抗拉强度。结合适中含量的V(0.07%-0.08%)微合金化和较高含量的Si(0.8%-0.9%)合金化,可以使中碳珠光体钢获得较好的强韧性匹配。  相似文献   

6.
本文对各种加热温度及冷却速度下的由第一汽车厂和大连钢厂联合开发,研制的35VS非调质易切钢的组织和性能进行了研究,结果完明,珠光体体积百分数和冷却速度有关,但奥氏体晶粒尺寸随着加热温度升高而增加,并在1050℃时发生突然长大,珠光体片层间距随冷却速度的增加而减少,铁素体的显微硬度明显高于35钢中铁素体的硬度。室温强度指标σb6和σ0:2随加热温度的升高而增加,室温塑性指标和δ随加热温度升高而降低,在性能和冷却速度关系曲线中,当冷却速度为60℃/min时,35VS钢具有较好的塑性,这种冷却速度下得到的组织呈魏氏组织。  相似文献   

7.
超高强抗震钢筋在进行弯曲试验时发生断裂。采用宏观观察、化学成分分析、扫描电镜分析、金相检验、中心偏析检验等方法,对弯曲试样断裂的原因进行分析。结果表明:热轧前加热温度较高,变形后奥氏体晶粒长大,使得珠光体团尺寸增大、珠光体含量增多;冷却缓慢导致网状铁素体沿奥氏体晶界析出,使材料的塑性和韧性下降,最终导致试样在弯曲试验时发生断裂。  相似文献   

8.
在Ti-60合金中碳的加入量大于0.17%时,组织中析出TiC结构的碳化物.在α β相区再结晶,碳偏聚于初生α(αp)相,导致碳化物主要在β转变组织中析出,其析出的百分数取决于αp体积分数.在β相区热处理,析出的碳化物钉扎β原始晶界,阻碍β晶粒的长大.β晶粒尺寸D、碳化物颗粒直径d和体积分数f三者遵循D/d∝f-1/3关系.随着碳含量的增加,β晶粒尺寸减小,α'片层通过界面迁移迅速长大以及形成α片层的合金元素的扩散速度加快,导致α'或α片层的厚度增加.碳的加入量小于0.09%时,碳完全固溶于基体中,产生固溶强化,β晶粒细小,导致合金的强度和蠕变抗力提高.碳含量增加导致粗大碳化物颗粒的析出,变形时产生应力集中使合金的塑性和蠕变性能降低.  相似文献   

9.
用透射电镜观察了30CrMnSiNi2A钢等温的微观组织,疲劳裂纹扩展行为、裂纹尖端塑性区和位错结构,结果表明,等温状态组织由马氏体和贝氏体组成。在一个奥氏体晶粒内一般存在四个板条领域、裂纹尖端的塑性区内存在主位错带,疲劳断裂的基本组织单元为板条晶或板条束。裂纹遇到板条束界时方向发生较大偏斜。  相似文献   

10.
本文用透射电镜复型及薄膜方法研究了低碳钢在亚温(α十γ)区域加热时奥氏体的形成并讨论了预先冷轧变形对奥氏体化的影响。结果表明,原始组织为铁素体加珠光体的退火低碳钢在亚温区奥氏体化时,奥氏体不仅在铁素体晶界上形成,也可在铁素体晶粒内形成。预先冷轧变形使退火组织在亚温区奥氏体化时,珠光体球化大大加速,并且有更多的奥氏体在铁素体晶粒内形成,但是奥氏体形成过程的基本特征不变。  相似文献   

11.
Abstract

The effect of prior austenite grain size on the crack propagation behaviour of tempered martensitic steels having tensile strength of about 2 GN m?2 was studied in hydrogen gas at pressures in the range from 98 to 784 kPa using modified compact tension specimens. The crack propagation rate da/dt in hydrogen decreased as the prior austenite grain size increased from 45 to 450 μm. The dependence of da/dt on hydrogen pressure at a given applied stress intensity was examined. The permeation of hydrogen from the crack tip surface was estimated to decrease with increasing grain size. However, the fractographic study suggested that the degree of embrittlement of grain boundaries increases with grain size. Consequently, the inverse effect of grain size on da/dt may be caused by a decrease of the average concentration of hydrogen along grain boundaries at the crack tip with increasing grain size.

MST/1060  相似文献   

12.
Abstract

The effect of a change in the morphology of the pearlite colonies on the Charpy impact energy of a fully pearlitic steel containing 0·76%C, 1·20%Mn, and 0·085% V was examined over the range of testing temperatures from ?50 to 200°C. The change from a multicolony nodular pearlite structure produced from austenite of grain size 185 μm to a structure composed of individually formed colonies produced from austenite of grain size 25 μm caused a decrease in the transition temperature of 75 K and an almost 100% increase in the Charpy impact energy measured at room temperature. It is proposed that the impact toughness of pearlitic steel can be affected by pearlite morphology, at constant interlamellar spacing, only at temperatures above the ductile–brittle transition temperature of the ferrite, when local plastic deformation in the pearlitic ferrite at high angle boundaries can arrest propagating brittle cracks.

MST/730  相似文献   

13.
研究了两次淬火+回火和传统的一次淬火+回火热处理对HSAL钢的显微组织和力学性能的影响。结果表明,在不显著降低强度的条件下,两次淬火使实验钢的冲击功明显提高,还改善了低温韧性和稳定性。两次淬火回火热处理可细化钢的组织,使原始奥氏体晶粒的尺寸和有效晶粒尺寸减小、大角度界面的密度和解离裂纹的扩展偏折频率提高。组织的细化和大角度晶界的增多抑制了裂纹的扩展,使韧性大幅度提高。  相似文献   

14.
Martensitic microstructure in quenched and tempered 17CrNiMo6 steel with the prior austenite grain size ranging from 6 μm to 199 μm has been characterized by optical metallography (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The yield strength and the toughness of the steel with various prior austenite grain sizes were tested and correlated with microstructure characteristics. Results show that both the prior austenite grain size and the martensitic packet size in the 17CrNiMo6 steel follow a HalI-Petch relation with the yield strength. When the prior austenite grain size was refined from 199 μm to 6 μm , the yield strength increased by 235 MPa, while the Charpy U-notch impact energy at 77 K improved more than 8 times, indicating that microstructure refinement is more effective in improving the resistance to cleavage fracture than in increasing the strength. The fracture surfaces implied that the unit crack path for cleavage fracture is identified as being the packet.  相似文献   

15.
A crack trapping model is developed for the fracture resistance of high-angle grain boundaries in free-standing brittle thin films, based on which a new size effect is predicted. In addition to the crystallographic misorientations, the grain boundary toughness is also dependent on the film thickness, primarily due to the geometrically necessary crack front branching.  相似文献   

16.
全层状TiAl基合金断裂中晶界的双重作用   总被引:2,自引:0,他引:2  
通过SEM原位拉抻技术和双晶体压缩实验研究了全片层TiAI基合金晶界断裂行为。研究表明,在全层状组织的断裂行为中,晶界具有双重作用。一方面,微裂纹首先萌发于晶界区,其扩展方式取决于晶界两侧片层的取向。另一方面,不同类型的晶界对裂纹扩展的阻力不同,因而对全层状TiAI基合金韧性的作用不同,纵向晶界有助于断裂韧性的提高,而横向晶界对合金韧性不利。  相似文献   

17.
Abstract

The effects of solution treatment (ST) temperature (1073–1473 K) on the prior austenite grain size, microstructure, and mechanical properties of a 2000 MPa grade 18%Ni Co free maraging steel have been investigated. The results show that prior austenite grain size normally increases with increase of ST temperature. Strength and ductility in the solution treated condition are independent of both ST temperature and prior austenite grain size due to constant martensite lath spacing and dislocation tangles. In the solution treated + aged condition, the relationship between yield strength and prior austenite grain size follows the Hall- Petch equation, and ductility improves until the ST temperature used is >1373 K. Accordingly, the fracture mode transforms from intergranular to transgranular at a critical prior austenite grain size of ~ 150 μ m, because of severe segregation of Ni3(Mo,Ti) and reverted austenite at prior austenite grain boundaries and martensite lath boundaries. The variation of Charpy V notch impact energy with increase of ST temperature in both the solution treated and solution treated + aged conditions is similar to that of the tensile ductility. The fracture toughness KIC, however, increases with increase of ST temperature. No thermal embrittlement resulted from the Ti(C,N,S) inclusion segregation at prior austenite grain boundaries and martensite lath boundaries in the high temperature solution treatment.  相似文献   

18.
Abstract

Instrumented Charpy V impact tests and static and dynamic fracture toughness tests were carried out on Ti–6Al–2Sn–4Zr–6Mo alloys in which the prior β-grain size was varied by heat treatment. The effect of microstructure on the toughness was then examined. With increasing prior β-grain size, the elongation, crack initiation, and particularly propagation toughness increased and the strength decreased slightly. The increase in crack initiation toughness was caused mainly by the increase in Widmanstätten α-lath size or spacing, while the increase in crack propagation toughness was caused by the deflection of the crack propagation path, which was brought about by the decrease in intersubcolony spacing. The intersubcolony spacing decreased with increasing number of ‘diffusion controlled’ Widmanstätten α nucleating sites, which were introduced by the deformation strain.

MST/786  相似文献   

19.
The effect of prior austenite on reversed austenite stability and mechanical properties of Fe‐0.06C‐0.2Si‐5.5Mn‐0.4Cr (wt.%) annealed steels was elucidated. With the decrease of austenitizing temperature from 1250 °C to 980 °C, the prior austenite changed from complete recrystallization to partial recrystallization, and the average austenite size was reduced. The volume fraction of reversed austenite was increased from 26.32 % to 30.25 % because of high density of grain boundaries and dislocations. The martensite transformation temperature of annealed steels was increased from ~115 °C to ~150 °C, and both of thermal and mechanical stability of reversed were reduced. There was no significant different in tensile properties, however, the impact toughness was enhanced from 100 J to 180 J at ?60 °C. The excellent impact toughness in annealed steel (austenitized at 980 °C) was obtained because of higher density of high misorientation grain boundaries, more volume fraction of reversed austenite and reduced segregation at grain boundaries.  相似文献   

20.
Cracking failure of butt-welded joint of 12Cr1MoV tube was comprehensively studied. Results show that both of initiation and propagation of the primary crack were circumferentially intergranular in the coarse-grained heat affect zone (CGHAZ). Many isolated and intergranular micro-cracks and cavities were observed near the primary crack.Neither oxide or corrosion products were observed in the isolated cavities or micro-cracks. According to the microstructure, location, propagation mode and morphology of the crack,the primary crack in butt-welded joint is concluded to be the intergranular reheating cracking (IRC). The crack failure is mainly due to poor welding quality, characterised by high residual stress and coarsened grain size. Mechanisms on the IRC based on previous laboratory research were studied on the failed tube sample, and results showed that the IRC is accumulation of high-stress induced creep damage, such as cavities along prior austenite grain boundaries (PAGBs). Neither segregation of alloys elements nor trace impurities were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号