首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 232 毫秒
1.
采用金相显微镜(OM)、扫描电镜(SEM)及能谱仪(EDS),结合拉伸力学性能与维氏硬度测试,研究了Al-5Ti-1B和Al-5Ti-0.2C晶粒细化剂对含Zr的7050铝合金铸态、均匀化态以及时效变形态的微观组织演变规律、第二相析出行为及力学性能的影响。结果表明:在7050合金中,Zr元素会使Al-5Ti-1B和Al-5Ti-0.2C均发生细化"中毒现象",降低晶粒细化剂的细晶效果;与Al-Ti-1B相比,增大Al-Ti-0.2C晶粒细化剂的添加量对于缓解"Zr中毒"现象,细化晶粒更有效,且能够提高合金强度与硬度,并使合金保持较好伸长率;同时,使用Al-5Ti-0.2C晶粒细化剂的7050合金,其第二相的分布较使用Al-5Ti-1B晶粒细化剂更加弥散、均匀。  相似文献   

2.
目的提高A356合金的断裂伸长率。方法采用铸造法制备了一种N掺杂型Al-4Ti-1C细化剂(简称Al-4Ti-1C),研究了其对A356合金的晶粒细化行为及对力学性能的影响。结果与传统的Al-5Ti-1B细化剂相比,Al-4Ti-1C不仅能有效细化A356的α-Al晶粒,而且能够明显细化其枝晶臂间距,细化后α-Al的平均晶粒尺寸为231μm,枝晶臂间距为28μm;而Al-5Ti-1B细化后分别为253μm和50μm。该细化剂对A356合金力学性能的提升也优于Al-5Ti-1B,细化后A356的拉伸强度和伸长率为298 MPa,4.0%,与Al-5Ti-1B的细化结果(292 MPa,3.0%)相比,伸长率提高幅度达33%。结论 Al-4Ti-1C是一种有效的A356晶粒细化剂。  相似文献   

3.
采用Al-5Ti-1B中间合金作为细化剂细化A357合金,考察细化剂加入量、保温温度及熔体在不同温度下保温时间对晶粒尺寸的影响,研究了Al-5Ti-1B中间合金对A357合金晶粒细化效果.研究表明:Al-5Ti-1B可明显减小A357合金的晶粒尺寸,并且在较长的时间内保持良好的细化效果;熔体长时间静置后易出现(钛)偏析,底部Ti含量比顶部要高,致使铸件整体细化效果大大降低;定期对熔体进行搅拌可有效消除偏析.  相似文献   

4.
目的 优化晶粒细化剂Al-5Ti-1B的加入速度,以改善8079铝合金铸轧板坯质量。方法 用电解铝液配料直接铸轧生产8079铝合金铸轧板坯,采用光学显微镜(OM)、扫描电子显微镜(SEM)和电子万能力学实验机等手段,研究了在晶粒细化剂Al-5Ti-1B加入速度(175、185、195、205 mm/min)不同时铝合金铸轧板坯显微组织和力学性能的变化规律,并对其影响机理进行了探讨。结果 随着晶粒细化剂Al-5Ti-1B加入速度的增大,铸轧板坯晶粒尺寸先急剧减小后趋于平缓,其抗拉强度和断后伸长率先增大后减小。当加入速度为175 mm/min时,铸轧板坯晶粒尺寸约为110 μm,其抗拉强度和断后伸长率分别为113.0 MPa和22%;当加入速度为185~195 mm/min时,铸轧板坯晶粒细小、分布均匀,尺寸为57~59 μm,其抗拉强度不低于134.3 MPa,断后伸长率不低于36.0%;当加入速度为205 mm/min时,铸轧板坯晶粒尺寸变化不大,尺寸约为56 μm,但在基体组织中开始出现偏析聚集现象,力学性能急剧下降,抗拉强度仅为89.7 MPa,断后伸长率仅为16.7%。能谱检测结果表明,铸轧板坯夹杂缺陷主要由Ti、Al、O、Fe和Si等元素组成,夹杂缺陷的存在破坏了基体组织的连续性。结论 当晶粒细化剂Al-5Ti-1B的加入速度为185~195 mm/min时,8079铝合金铸轧板坯具有更优的显微组织和力学性能。  相似文献   

5.
为弥补Al-10Sr中间合金对A356铝合金变质处理的不足,采用自制的Al-5Ti-1B-1RE中间合金与A1-10Sr中间合金对A356铝合金进行动态复合细化变质处理,研究变质处理后合金的显微组织,并与理论计算结果进行了比较。结果表明:采用JJ-1型精密增力电动搅拌器对熔体进行强力搅拌、振动,动态复合细化变质不仅能使共晶硅相由粗大的板片状转变为细密的颗粒状,并在α-Al边界均匀析出,而且使α-Al相明显细化,力学性能显著提高,与约翰逊-梅尔方程理论对组织晶粒尺寸控制研究结果相一致;同时A356铝合金熔体吸气倾向显著减轻,与热力学近似计算方程和斯托克斯定律对除气机制进行定量计算研究结果相一致。  相似文献   

6.
Al-5Ti-0.25C细化剂对2024铝合金组织及力学性能的影响   总被引:1,自引:0,他引:1  
研究了Al-5Ti-0.25C细化剂对2024铝合金铸态显微组织及力学性能的影响。试验结果表明:未添加细化剂时,2024铝合金显微组织呈粗大的枝晶状,平均尺寸约为150μm;添加Al-5Ti-0.25C后,晶粒为细小的等轴晶。本试验条件下,最佳的细化剂添加量为0.3%,此时,2024铝合金的平均晶粒尺寸为56μm,其力学性能得到显著提高,抗拉强度和延伸率分别为382 MPa、2.60%,与未细化试样相比增幅分别为12.4%、69.9%。  相似文献   

7.
研究了不同热处理制度对Ti-47Al-2Nb-2Cr-0.2Si(原子分数,%)铸造合金组织形态的影响。研究表明Ti-47Al-2Nb-2Cr-0.2Si铸造合金快速冷却的铸造组织是单相γ的层片状组织;通过热处理可以有效控制合金的相组成,并且可以细化组织,经适当热处理,合金的晶粒尺寸可以达到40-50μm。  相似文献   

8.
本文采用氟盐反应法,通过不同粒度的KBF_4、K_2TiF_6原料与Al熔体反应制备出Al-5Ti-1B中间合金,然后分别从元素实收率、微观组织特征、晶粒细化效果等方面讨论了KBF_4、K_2TiF_6粒度对制备Al-5Ti-1B中间合金的影响。实验结果显示,控制KBF_4、K_2TiF_6的粒度可以有效地控制Ti、B元素的实收率、TiAl_3相的尺寸及分布的均匀性,从而起到改善细化效果的作用。该研究结果期望为工业生产高质量Al-Ti-B中间合金细化剂提供技术参考。  相似文献   

9.
采用电化学工作站,扫描电镜(SEM),透射电镜(TEM)等方法,研究了Al-5Ti-1B与Al-5Ti-0.2C晶粒细化剂对预涂感光版(PS)用1050铝板基的微观组织及腐蚀性能的影响。结果表明:采用Al-5Ti-1B细化剂的铸轧板中存在粗大的铁、硅第二相,PS版铝板基中存在聚集第二相和位错缠结,电解腐蚀时,出现局部腐蚀严重,腐蚀孔洞分布不均匀等现象;添加Al-5Ti-0.2C晶粒细化剂的铸轧板中,铁硅相相对细小,分布也更加均匀,无聚集现象,PS版铝板基中第二相细小弥散,分布均匀,电解腐蚀时,腐蚀速率快,腐蚀均匀,电解腐蚀性能得以改善。  相似文献   

10.
高温熔体反应法制备Al-5Ti-1B细化剂   总被引:1,自引:0,他引:1  
利用高温熔体反应法成功制备Al-5Ti-1B细化剂。通过热力学计算,确定Al-5Ti-1B细化剂的起始反应温度,研究熔体温度对细化剂组织形貌及吸收率的影响。利用X射线衍射,扫描电子显微镜和X射线能谱仪观察细化剂的相组成和形貌,同时对Al-5Ti-1B细化剂铸锭进行高温挤压,并对挤压出的Ф9.5mm丝材进行微观组织分析和细化实验。结果表明:细化剂主要由TiB_2,TiAl_3,α-Al相组成;850℃制备的细化剂铸锭组织形貌最佳,且Ti和B吸收率达到最佳匹配。挤压后TiAl3相呈细小的块状和TiB_2弥散分布在基体内。添加0.2%(质量分数)细化剂后,纯铝的晶粒尺寸由3.99mm细化到0.45mm。  相似文献   

11.
本文采用挤压铸造的方法制备了7075铝合金传动空心轴,研究了Al-5Ti-B及RE对挤压铸造7075铝合金铸件微观组织和力学性能的影响.结果表明:未加入细化剂的合金晶粒大小约为50μm,拉伸强度为454 MPa;加入0.29%RE的合金和1%A1-5Ti-B的合金,晶粒尺寸分别了减小到26μm和25μm,拉伸强度分别提...  相似文献   

12.
The addition of Sr in Al-Si alloys as a modifier causes a transition of the morphology of eutectic silicon from coarse plate-like or acicular to fine fibrous. However, it may also lead to the formation of long columnar dendritic -Al phase. Al-5Ti-1B master alloy is often used as a grain refiner to achieve the fine equaixed grains in aluminum and aluminum alloys. The aim of the present study is to highlight the effect of Al-5Ti-1B master alloy additions on the microstructure of near-eutectic Al-Si alloys modified with Sr. When the addition of Al-5Ti-1B master alloy was below 0.82 mass%, the dendritic -Al phase changed from long columnar to equiaxed, and there were no noticeable changes of the morphology and size of eutectic silicon, while the size of eutectic cells decreased slightly. However, when the addition was above 0.82 mass%, the deleterious influence of Al-5Ti-1B master alloy on the modification effect of Sr emerged and with further increases in addition level a fully unmodified microstructure was finally produced. The results indicate that the effective Sr in the melt decreases with increased addition of Al-5Ti-1B. The poisoning event of Al-5Ti-1B master alloy on the modification of Sr is supposed to be related with the interaction between Sr and Ti.  相似文献   

13.
1. IntroductionMagnesium alloys have been utilized as structural ma-terial replacing other metals and plastics in the electronicand automobile industries because of their light weightand high recyclability. Grain refinement[1~9] is an im-portant method to improve their mechanical propertiesand workability.Mg-Al based alloys are the most common commer-cial magnesium alloys, and grain-refining treatment isgenerally required. Carbon addition[10~17] and Elfinalprocess[18~22] are the two major gra…  相似文献   

14.
The influences of preparation conditions of Al-5Ti-B (as-cast and hot-rolled) and Al-10Sr (as-cast and hotextruded) and melt treatment procedures on the grain refinement and modification performance of A356 alloy are experimentally studied. For the two master alloys, the 50% reduction is sufficient to meet the demands of the efficient grain refinement and modification of A356 alloy. When Al-STi-B is introduced into the melt prior to degassing, the grain refinement efficiency of Al-5Ti-B will be greatly increased due to the better dispersity of TiB2 particles. Al-5Ti-B master alloy is less prone to affect the modification effect of Al-10Sr when they are used together.  相似文献   

15.
Addition of Al-5Ti-1B alloy to molten aluminum alloys can refine α-Al grains effectively and thereby improve their strength and toughness. TiAl3 and TiB2 in Al-5Ti-1B alloy are the main secondary-phase particles for refinement, while the understanding on the effect of their sizes on α-Al grain refinement continues to be fragmented. Therefore, Al-5Ti-1B alloys with various sizes and morphologies of the secondary-phase particles were prepared by equal channel angular pressing (ECAP). Evolution of the secondary-phase particles during ECAP process and their impact on α-Al grain refinement were studied by X-ray diffraction and scanning electron microscope (SEM). Results show that during the ECAP process, micro-cracks firstly appeared inside TiAl3 particles and then gradually expanded, which resulted in continuous refinement of TiAl3 particles. In addition, micro-distribution uniformity of TiB2 particles was improved due to the impingement of TiAl3 particles to TiB2 clusters during deformation. Excessively large sizes of TiAl3 particles would reduce the number of effective heterogeneous nucleus and thus resulted in poor grain refinement effectiveness. Moreover, excessively small TiAl3 particles would reduce inhibitory factors for grain growth Q and weaken grain refinement effectiveness. Therefore, an optimal size range of 18–22 μm for TiAl3 particles was suggested.  相似文献   

16.
Abstract

The present work reports grain refinement studies on AI-O.2%Zr and AI-2%Zr alloys using an AI-5Ti-1B master alloy as the grain refiner. The influence of impurities (Fe and Si) present in Al on the poisoning tendency (adverse effect) of Zr on grain refinement has also been studied. Zirconium was found to be a potential grain refiner of Al at high concentrations (2%). However, Zr has shown poisoning effects on the good grain refining capability of AI-5Ti-1B. This poisoning effect was milder at higher concentrations of Zr and in the presence of impurities in AI. The influence of Zr and impurities on the grain refining efficiency of AI-5Ti-1B is discussed in the light of macroscopic examination, grain size analysis, SEM and energy dispersive X-ray microanalysis, electron probe microanalysis, and TEM studies on AI-Zr alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号