首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
以有机ZrC、ZrB2前驱体和聚碳硅烷的混合溶液为浸渍前驱体, 利用聚合物浸渍裂解法(PIP)制备了C/C-ZrC-SiC-ZrB2复合材料, 并对材料的微观形貌、弯曲和烧蚀性能进行了研究。研究结果表明: 利用该方法可制备出陶瓷相填充充分且分布均匀的C/C-ZrC-SiC-ZrB2复合材料。材料的弯曲强度为126.31 MPa, 断面有大量的纤维束拔出, 表现出良好的假塑性断裂模式。经过120 s氧–乙炔烧蚀, 材料无明显烧蚀, 其线烧蚀率和质量烧蚀率分别为–2.50×10-4 mm/s和–1.33×10-4 g/s。在材料表面不同区域形成不同的保护层, 不仅能够降低氧气和热流向材料内部扩散, 还具有弥补缺陷的作用, 使材料表现出优异的抗烧蚀性能。  相似文献   

2.
ZrC-SiC-C/C复合材料的制备及其烧蚀性能   总被引:1,自引:0,他引:1       下载免费PDF全文
以低密度C/C为坯体,采用前驱体浸渍裂解法(PIP)制备ZrC-SiC-C/C复合材料,研究其微观结构和烧蚀性能,并探讨其抗氧化烧蚀行为。结果表明:ZrC-SiC双元陶瓷相弥散分布于基体中,且各相界面结合良好;ZrC-SiC-C/C复合材料表现出良好的抗氧化烧蚀性能,经2 200℃/120s等离子体烧蚀后,其线烧蚀率和质量烧蚀率分别为1.67×10~(-4) mm·s~(-1)和6.04×10~(-4) g·s~(-1)。烧蚀温度为2 200℃时,材料表面形成的ZrO_2-SiO_2二元共熔体系氧化膜,有效抑制氧化性气氛向材料内部的渗透,减缓火焰对材料的剥蚀作用;烧蚀温度为2 500℃时,材料表面形成以表层为ZrO_2和底层为ZrO_2-SiO_2二元共熔体系的氧化膜,其中ZrO_2层阻挡热量向内部传递,有助于底层形成致密的氧化层。  相似文献   

3.
粒子浓度对C/C复合材料烧蚀行为的影响   总被引:1,自引:0,他引:1  
为研究不同粒子浓度侵蚀条件下C/C复合材料的烧蚀机理及性能,采用自主研发的氧-煤油烧蚀实验系统对轴棒法编织的C/C复合材料进行烧蚀/侵蚀实验,实验的粒子浓度分别为0,1.37%,2.22%,2.64%。采用扫描电镜(SEM)观察实验后试样的微观形貌,测算了试样的烧蚀率,研究了粒子浓度对材料烧蚀率的影响规律,分析了材料的烧蚀机理。结果表明:不加粒子时试样的质量烧蚀率仅为0.159g/s,线烧蚀率为0.175mm/s,加入粒子后质量烧蚀率与线烧蚀率的最小值分别为0.432g/s和0.843mm/s,且随粒子浓度的增加,烧蚀率均加速增加。粒子的侵蚀作用加剧了试样的烧蚀,冲刷面上径向纤维的烧蚀梯度随粒子浓度的增加而增大。  相似文献   

4.
采用液相浸渍结合反应熔渗法制备了Cf/HfC复合材料。研究了浸渍效果、抗氧化烧蚀微粒分布形貌、熔渗效果与熔渗组织,并考核了C_f/HfC复合材料的抗氧化烧蚀性能和力学性能。结果表明:经5次浸渍-碳化循环和1次高温处理工艺制备了含13wt%抗氧化烧蚀微粒的ZrB_2+HfO_2+TaSi_2改性C/C预制体,其密度和开孔率分别为1.41g/cm~3和24.84%,微粒主要分布在纤维束之间的基体碳中,且分布均匀。改性C/C预制体经过Hf35Zr10Si5Ta合金反应熔渗制备的C_f/HfC复合材料密度和开孔率分别为2.98g/cm~3和12.95%,其线烧蚀率为0.017 1mm/s,弯曲强度为173.76 MPa,断裂方式为假塑性断裂。  相似文献   

5.
采用反应熔渗法(RMI)制备出密度为3.288 g/cm3的ZrC-SiC/(C/C)复合材料,采用SEM-EDS、XRD和TEM等分析手段研究了ZrC-SiC/(C/C)复合材料的微观组织结构。结果表明:陶瓷相填充充分且均匀分布在C/C复合材料基体中,其内部组织主要由ZrC、SiC、热解炭(PyC)和碳纤维(CF)组成。熔渗剂反应充分,复合材料内部未检测到残余未反应金属Zr、Si。采用氧乙炔烧蚀设备检测ZrC-SiC/(C/C)复合材料在2 500℃下,烧蚀时间分别为30 s、60 s和90 s的烧蚀性能,其质量烧蚀率分别为5.667 mg/s、2.907 mg/s和3.030 mg/s,线烧蚀率分别为1.001 μm/s、4.662 μm/s和4.450 μm/s。试验结果表明,在高温烧蚀过程中,ZrC-SiC/(C/C)复合材料烧蚀中心区陶瓷相逐渐氧化生成ZrO2和SiO2;生成的ZrO2和SiO2混合物保护并填充复合材料烧蚀孔隙,阻止氧化反应向材料内部进行,有效提高了材料的烧蚀性能。   相似文献   

6.
以蔗糖为炭源,磷酸为活化剂,采用真空浸渍法经炭化、活化制得膨胀石墨基C/C复合材料.采用SEM、氮气吸脱附法、TG和TEM等测试手段,研究了磷酸/蔗糖质量比(Xp)、蔗糖浓度对复合材料孔结构和比表面积的影响,利用FTIR和Boehm滴定法对复合材料表面的化学官能团进行表征,并考察了C/C复合材料对甲醛的吸附能力.结果表明:膨胀石墨基C/C复合材料含有大量的微孔、一定量的介孔和大孔,表面含有丰富的含氧官能团,有利于对甲醛极性分子的吸附.在Xp=1.0、蔗糖溶液浓度为30%(质量分数)时所制得的膨胀石墨基C/C复合材料比表面积最高,达到2112m2/g,孔容为1.08 mL/g,其对甲醛的吸附量为854mg/g,较同工艺制备的活性炭提高了26.9%.  相似文献   

7.
以蔗糖为炭源, 磷酸为活化剂, 采用真空浸渍法经炭化、活化制得膨胀石墨基C/C复合材料。采用SEM、氮气吸脱附法、TG和TEM等测试手段, 研究了磷酸/蔗糖质量比(Xp)、蔗糖浓度对复合材料孔结构和比表面积的影响, 利用FTIR和Boehm滴定法对复合材料表面的化学官能团进行表征, 并考察了C/C复合材料对甲醛的吸附能力。结果表明: 膨胀石墨基C/C复合材料含有大量的微孔、一定量的介孔和大孔, 表面含有丰富的含氧官能团, 有利于对甲醛极性分子的吸附。在 Xp=1.0、蔗糖溶液浓度为30%(质量分数)时所制得的膨胀石墨基C/C复合材料比表面积最高, 达到2112 m2/g, 孔容为1.08 mL/g, 其对甲醛的吸附量为854 mg/g, 较同工艺制备的活性炭提高了26.9%。  相似文献   

8.
采用浆料浸渍法引入ZrB2微粉作为耐超高温相, 以炭纤维为增强体, 以热解炭和SiC为基体, 制备了ZrB2含量不同的耐超高温C/C-SiC-ZrB2复合材料; 通过电弧风洞考核材料的抗烧蚀性能, 通过XRD、SEM和EDS分析材料的烧蚀机理。结果表明: 在Ma 6电弧风洞条件下, C/C-SiC-ZrB2复合材料的抗烧蚀性能优于C/C-SiC, 且随着ZrB2含量的增加, 抗烧蚀性能随之提高; 在高温阶段形成的ZrO2-SiO2玻璃态熔融层起到了抗氧化烧蚀的作用。  相似文献   

9.
烧蚀角度对C/C复合材料烧蚀行为的影响EI北大核心CSCD   总被引:1,自引:0,他引:1  
烧蚀角度对C/C复合材料的耐烧蚀性能有显著的影响,采用自主研发的氧-煤油烧蚀实验系统对轴棒法编织的三维四向C/C复合材料进行烧蚀/侵蚀实验,实验的典型角度分别为90°,60°,45°,侵蚀时的粒子浓度为1.37%。测算试样的宏观烧蚀率,并采用扫描电镜(SEM)观察了试样烧蚀后的微观形貌。分析了角度对C/C复合材料烧蚀行为的影响规律,并探讨其烧蚀机理。结果表明:不加粒子进行烧蚀实验时,烧蚀角度90°,60°,45°对应的试样质量烧蚀率分别为0.146,0.123,0.100g/s,随烧蚀角度的减小,质量烧蚀率加速降低;加粒子进行侵蚀实验时,烧蚀角度90°,60°,45°对应的试样质量烧蚀率分别为0.452,0.455,0.432g/s,线烧蚀率分别为1.863,1.323,0.843mm/s,随烧蚀角度的减小,质量烧蚀率基本不变,线烧蚀率逐渐降低。烧蚀角度越小,射流的冲刷作用越强,伴随热化学烧蚀的作用,导致烧蚀/侵蚀实验条件下,径向纤维的烧蚀梯度均增加;烧蚀实验条件下,轴向纤维束外沿的受冲刷区域变大。  相似文献   

10.
提出了用CuCl2 溶液浸渍还原法制备C/ SiC-Cu 复合材料的新工艺。对还原工艺进行了初步探讨; 用XRD、EDS、SEM 研究复合材料的微观形貌及组成; 用三点弯曲测定C/ SiC-Cu 复合材料的弯曲强度。结果表明:影响增重率的主要因素为C/ SiC 原料的气孔率和浸渍还原次数。Cu 在复合材料中呈颗粒状或块状, 它不仅渗入到纤维束间, 还渗入到纤维间的微孔中。Cu 的渗入对C/ SiC 复合材料的三点弯曲强度基本无影响。   相似文献   

11.
陶瓷前驱体配比对C/C-ZrC-SiC复合材料烧蚀性能的影响   总被引:3,自引:3,他引:0  
采用聚碳硅烷和有机锆聚合物混合前驱体,通过反复浸渍裂解工艺制备了C/C-ZrC-SiC复合材料,分析了材料的组成与结构,研究了不同陶瓷前驱体配比对材料烧蚀性能的影响。结果表明,复相陶瓷基体由大量ZrC颗粒均匀弥散分布在连续SiC相中组成。随着ZrC含量的增加,C/C-ZrC-SiC复合材料的烧蚀率呈现先减小后增大的趋势。当聚碳硅烷与有机锆聚合物的配比(质量比)为1∶3时,ZrC体积含量约为13.3%,氧乙炔烧蚀600s后,C/C-ZrC-SiC复合材料的线烧蚀率和质量烧蚀率降至最低,分别为-0.0015mm/s和0.0002g/s。研究发现,高温氧化环境中,形成了粘稠的ZrO2-SiO2玻璃态氧化膜,有效降低了氧化性气氛向材料内部扩散的速率,对材料基体形成了较好的保护。  相似文献   

12.
本文采用先驱体裂解-热压烧结方法制备出了Cf/SiC复合材料,并重点研究了复合材料的致密化过程.结果表明,复合材料主要是通过液相烧结而得到致密化的.由于复合材料中聚碳硅烷(PCS)的裂解不仅有利于烧结液相的形成,而且形成了大量的纳米级SiC颗粒,因此,复合材料能够在较低烧结温度下得到较好的致密化,从而使复合材料具有较好的力学性能.  相似文献   

13.
采用先驱体浸渍裂解法制备陶瓷基复合材料过程中会形成基体裂纹和孔隙,基体开裂和裂纹演化机制是工艺设计和性能优化的依据。本研究采用真空旋转浸渍–裂解法制备了无界面相的纤维束C/SiCN复合材料,分析了该材料的拉伸性能和基体裂纹增殖现象,讨论了浸渍裂解次数和热处理温度对基体裂纹的影响规律。研究结果表明:当热处理温度为1000~1400℃时,该复合材料的化学组成变化较小;热处理温度达到1600℃时,先驱体转化的SiCN基体分解,C含量降低,SiC含量升高。随浸渍裂解次数由1次增加到4次,该复合材料的平均拉伸强度分别提升14.19%、38.83%和63.47%,同时基体裂纹间距和裂纹开口距离均逐渐减小,基体纤维结合增强,断口纤维拔出减少。热处理温度从1000℃升高到1400℃,C/SiCN拉伸强度缓慢增大;热处理温度为1600℃时,SiCN基体由无定形的SiCxN4–x四面体向SiC晶体转变,基体与纤维脱粘,二者结合强度降低,同时基体体积收缩使C纤维损伤,导致该复合材料拉伸强度陡然下降30.0%。  相似文献   

14.
采用基体改性技术将ZrC引入C/C复合材料中,制备了一种新型的C/C—ZrC复合材料。通过氧乙炔焰烧蚀实验,研究了ZrC含量及烧蚀时间对C/C—ZrC复合材料高温耐烧蚀性能的影响。用XRD和TEM对烧蚀后材料的相组成和微观结构进行了分析,结果表明,ZrC被氧化的主要生成物为ZrO2,伴有少量ZrC和C,含26.46%ZrC的C/C—ZrC复合材料,在氧乙炔焰烧蚀50s后,在材料表面生成致密的ZrO2膜,阻挡了氧对基体的扩散,并有隔热作用,有效保护复合材料被烧蚀和冲刷。实验表明,复合材料在高温氧乙炔焰烧蚀20s后,线烧蚀率和质量饶蚀率分别为0.012mm/s和0.0033g/s,比C/C复合材料分别降低7.6%和50%。  相似文献   

15.
C/SiC复合材料的常压制备与性能研究   总被引:1,自引:0,他引:1  
采用聚碳硅烷作为碳化硅先驱体, 以二维0°/90°正交编织碳布叠层后作为增强体, 采用真空压力浸渍的方法制备了C/SiC复合材料, 研究了裂解温度和浆料浓度对复合材料性能的影响. 结果表明: 复合材料的弯曲强度随着裂解温度的升高以及浆料浓度的增加都呈增加趋势; 基体在纤维束内部分布均匀, 但依然有一些小气孔存在; 在1100℃时, 基体中开始生成一定量的β-SiC相, 复合材料的三点弯曲强度达到232MPa, 断裂韧性达到10.50MPa·m1/2. 在断裂过程中表现出明显的韧性断裂, 断口有较长的纤维拔出.  相似文献   

16.
以SICl4-NH3-H2为反应体系,采用化学气相渗透法CVI)制备C/Si3N4复合材料.渗透产物的能谱和X射线衍射表明渗透产物为非晶态Si3N4,经1350℃真空热处理后,产物仍然为非晶态Si3N4;经1450℃真空热处理后,产物已经发生晶型转变,由非晶态转变为晶态的α-Si3N4和β-Si3N4.渗透温度、渗透时间、气体流量对试样致密化、增重及微观结构的影响研究表明渗透温度为900℃、SiCl4流量为30mL/min、H2流量为100mL/min、NH3流量为80mL/min、渗透时间120h、系统压力1000Pa时,气体渗透进入碳布预制体后,在预制体内反应均匀,制备的复合材料较均匀.  相似文献   

17.
低分子量聚碳硅烷制备3D-Cf/SiC复合材料   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了低分子量聚碳硅烷 (PCS) 通过先驱体浸渍裂解 (PIP) 工艺制备Cf/SiC复合材料。分析表明:PCS的数均分子量为400,活性较强,陶瓷化产率为70%左右,在1200℃基本转化为微晶态的β-SiC。分别通过3种不同升温速率制备了3D-Cf/SiC复合材料试样,其弯曲强度分别为745.2MPa、686.7MPa和762.5MPa,明显高于文献报道3D-Cf/SiC复合材料弯曲强度300~500MPa的水平。试样断口的SEM照片均显示长的纤维拔出,有良好的增韧效果,低分子量PCS裂解得到的基体比较致密。实验结果说明,低分子量PCS适合于制备3D-Cf/SiC复合材料,并且提高升温裂解速率对材料性能影响很小。   相似文献   

18.
2D needle-punched fiber felt was infiltrated by a kind of rapid isothermal chemical vapor infiltration technique. The infiltration process and texture transition of the infiltrated C/C composites were investigated. The porosity and the variations of the cumulative pore volume were determined by mercury porosimetry. The texture of matrix carbon was studied under a polarized light microscope. The results show that the relative mass gain of the sample increases directly as the infiltration time at the initial stage until 20 h, and subsequently the increasing rate of the relative mass gain decreases gradually with the prolonging of infiltration time. Three layers of pyrocarbon were formed around fibers. Low-textured pyrocarbon was obtained at the initial stage. With the densification going on, high-textured pyrocarbon was formed on the surface of low-textured pyrocarbon. Then, low-textured pyrocarbon was produced again during the final stage of densification. The texture transition is ascribed to the variation of the ratio of cumulative inner surface area to volume of pores and the gas partial pressure in pores.  相似文献   

19.
化学液气相沉积技术是目前最快的C/C复合材料的制备工艺,它的致密化速度是传统等温化学气相沉积工艺的100倍.本文阐述化学液气相沉积工艺的优越性和用于制备C/C复合材料的工艺原理;讨论化学液气相沉积热解炭的微观组织结构和工艺的计算机数值模拟的研究进展,最后展望化学液气相致密化技术的发展和应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号