首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
几种常用锌层无铬钝化技术的研究进展   总被引:1,自引:0,他引:1  
无铬钝化技术利于环保,是近年来镀锌件后处理的研究热点。从成膜机理、国内外研究概况及现阶段研究存在的主要问题方面,分别介绍了镀锌层无铬钝化技术中应用前景较好的硅酸盐钝化、稀土钝化、钛盐钝化及有机硅烷钝化,指出了今后无铬钝化的研究方向:加强复合钝化研究;寻找合适的物质提高钝化膜的自愈能力;重视钝化膜及钝化液的稳定性研究。  相似文献   

2.
目前,国内生产企业批量热镀锌无铬钝化实际应用的成功案例较少。利用复配技术在钼酸盐钝化液中加入适量磷酸、活化剂、封闭剂,配制了2种无铬钝化液,并对批量镀锌板进行无铬钝化。采用扫描电镜、能谱仪和中性盐雾试验等对比研究了批量镀锌无铬钝化层的表面形态、成分、组成和耐蚀性能,对无铬钝化层的耐蚀机理进行了分析。结果表明,批量热镀锌钼酸盐无铬钝化层具有良好的耐蚀性能和抗白锈能力,能有效提高批量镀锌层的耐蚀性。  相似文献   

3.
镀锌产品无铬钝化技术研究进展   总被引:8,自引:4,他引:4  
纯镀锌产品耐腐蚀性不强,对镀锌件进行无铬钝化,有利于提高其耐腐蚀性能,同时还有利于环境保护.为此,从无机物和有机物两方面综述了当今无铬钝化镀锌产品的研究现状,并展望了今后的发展方向.  相似文献   

4.
介绍了镀锌层银白色三价铬钝化以及无铬钝化的工艺现状和成膜机理,并阐述了未来发展的趋势。指出了三价铬钝化工艺不能从根本上解决铬元素的环境污染问题,无铬钝化工艺为大势所趋,以硅酸钠为主要成膜剂,在镀锌件表面形成银白色钝化膜的无铬钝化工艺具有可行性,应用前景广阔。  相似文献   

5.
热镀锌钢板无铬钝化膜的改性及其耐蚀性能   总被引:2,自引:1,他引:1  
以丙烯酸树脂作主成膜剂,钼酸、磷酸盐作缓蚀剂,再加入经铝溶胶改性的硅烷偶联剂,通过交联反应在镀锌板表面形成无铬钝化膜。利用红外光谱、中性盐雾试验、电化学交流阻抗和极化曲线对镀锌板表面钝化膜特征进行了表征。结果表明:铝溶胶改性硅烷在钝化膜中形成了Si-O-Al键;改性后的无铬钝化膜更加致密,耐腐蚀性能更高。  相似文献   

6.
镀锌层无铬钝化膜耐蚀性能的研究   总被引:3,自引:2,他引:1  
为提高镀锌钢板的耐蚀性,且替代有致癌作用的六价铬钝化,采用物理共混法以水性丙烯酸树脂和硅溶胶为成膜剂,钼酸盐为缓蚀剂,添加植酸得到了无铬钝化液,并对镀锌板进行了钝化处理.通过中性盐雾腐蚀试验(NSS)确定了该钝化液的最佳组成;应用SEM分析了所得钝化膜的形貌及膜层元素组成;采用极化曲线研究了钝化膜的耐蚀性及耐蚀机理.结果表明:镀锌层经过无铬钝化液处理后耐蚀性明显提高,60 h NSS后腐蚀面积仅为5%;钝化还在镀锌层表面形成了一定厚度的保护性膜层;钝化后试样的开路电位[-1 054 mV(vsSCE)]较未处理过的镀锌层[-1 098 mV(vs SCE)]有所正移,钝化膜的存在阻滞了锌层腐蚀的阴极过程.  相似文献   

7.
镀锌层无铬钝化耐蚀机理的研究进展   总被引:6,自引:2,他引:6  
综述了国内外镀锌及锌合金无铬钝化耐蚀机理的研究进展,将为研究镀锌层无铬钝化提供有益的参考,以便为代替高毒性的铬酸盐钝化提供理论依据.  相似文献   

8.
镀锌钢板无铬钝化技术的研究进展   总被引:1,自引:1,他引:0  
随着环保要求的日益严格,用无毒的钝化液取代铬酸盐钝化是镀锌钢板钝化的必然趋势.综述了国内外镀锌钢板无铬钝化研究的最新进展,展望了无铬钝化未来的发展前景.  相似文献   

9.
为了进一步提高热浸镀锌层钝化膜的耐蚀性能,针对目前无铬钝化多为独立体系的有机物钝化或无机物钝化的情况,运用有机物与无机物进行复合钝化。通过正交试验法确立了热浸镀锌层无色钝化工艺,采用单因素变量法、点滴试验、中性盐雾腐蚀试验及电化学测试技术,研究了复合钝化工艺参数对钝化膜外观和耐蚀性的影响。结果表明:最佳复合钝化工艺为40 g/L丙烯酸树脂,20 g/L硝酸钠,40 g/L硅酸钠,15 m L/L过氧化氢;p H值11,钝化时间30 s,温度30℃,恒温烘干;钝化膜的耐蚀性能接近于三价铬钝化。  相似文献   

10.
镀锌层无铬钝化研究进展   总被引:12,自引:0,他引:12  
综述了国内外镀锌层上无铬钝化研究进展,指出随着环境保护要求的提高,用低毒性钝化剂取代铬酸盐钝化是镀锌层钝化的主要方向,这些研究成果将为无铬钝化的研究提供参考。  相似文献   

11.
镀锌层上有机物无铬钝化涂层的耐蚀性   总被引:23,自引:9,他引:14  
选择了一种无毒的水溶性丙烯酸树脂(AC)加入至钼酸盐、磷酸盐中(M)得到一种钝化液(ACM),对镀锌层进行钝化处理以代替有毒的铬酸盐钝化。通过盐雾试验、扫描电镜、电化学测试等手段,研究了该纯化膜的耐蚀性及耐蚀机理。结果表明,热浸镀锌层采用该无毒钝化液进行钝化,可以推迟镀锌层出现白锈的时间,其抗蚀性已接近铬酸盐钝化水平;ACM钝化膜耐蚀性的提高是由于钝化膜中的钼酸盐与丙烯酸树脂产生交联作用,抑制钝化膜裂纹的扩展,同时由于膜层中钼酸盐的缓蚀作用,提高了镀锌层的抗蚀性。  相似文献   

12.
镀锌层三价铬钝化膜腐蚀行为的研究   总被引:6,自引:1,他引:5  
任艳萍  陈锦虹 《材料保护》2007,40(2):7-10,41
通过盐雾试验、扫描电镜、电化学测试和X射线光电子谱(XPS)等手段,研究了三价铬盐(TC)和三价铬盐加丙烯酸树脂(TCA)两种钝化液制得钝化膜的腐蚀行为及其耐蚀机理.结果表明,热浸镀锌层经TC、TCA钝化处理后,均能有效提高其抗腐蚀能力;SEM发现TC钝化膜表面出现微裂纹,TCA钝化膜表面呈网状的胞状组织覆盖于镀锌层之上,这种致密性好、稳定性高的膜层起到了更好的机械隔离作用,并能抑制钝化膜中微裂纹的产生,所以耐蚀性能大大提高;XPS分析表明,TC及TCA钝化膜层铬是以CrOOH或Cr(OH)3三价存在.此外,TCA膜层中还含有四价C、五价N.  相似文献   

13.
镀锌层无铬钝化工艺的研究   总被引:5,自引:1,他引:4  
研究了用于锌镀层彩色钝化的无铬钝化液最佳配方及工艺.以钼酸盐为主要原料,通过加入协同缓蚀剂,控制工艺条件可得到呈亮丽彩虹色的钝化膜,并开发了一种封闭处理工艺以提高膜层的耐蚀性.通过电化学测试手段比较了铬酸盐钝化膜、钼酸盐钝化膜及镀锌层的耐蚀性能.  相似文献   

14.
镀锌层表面KH-560硅烷膜耐蚀性能研究   总被引:1,自引:0,他引:1  
利用正交实验研究了硅烷偶联剂在镀锌板上的钝化工艺,采用KH-560对热镀锌板进行钝化处理.比较钝化膜与空白试样在5%NaCl溶液中的极化曲线、电化学交流阻抗谱,并通过盐水浸泡实验进一步验证了硅烷膜的耐蚀性能.结果表明:经硅烷钝化处理后的镀锌板,其腐蚀电流密度下降,极化电阻升高,硅烷膜抑制了镀锌板的腐蚀过程,其耐蚀性能优于空白试样,接近铬酸盐钝化膜的耐蚀性.  相似文献   

15.
为了研制热浸锌层表面高耐蚀、绿色环保的无铬钝化工艺,对热浸锌板进行植酸钝化、硅烷钝化和植酸/硅烷两步复合钝化。采用正交试验和单因素试验对复合钝化工艺进行了优化;采用Tafel曲线、盐雾试验及硫酸铜点滴试验分析复合钝化膜的耐蚀性能,利用场发射扫描电镜(FESEM)观察了钝化膜的表面形貌,通过EDS分析钝化膜的成分,并提出复合钝化膜的结构模型。结果表明:植酸膜与硅烷膜通过"交联-协同作用"在热浸锌表面形成一层致密的保护膜层,较单一钝化膜更致密,耐蚀性能与三价铬钝化膜相当;经植酸/硅烷复合钝化处理后,锌表面生成的钝化膜层阻碍O_2和电子在锌表面和溶液之间的转移和传递,改变了界面反应历程,从而提高了阴极极化,改善了复合钝化膜的耐腐蚀性能。  相似文献   

16.
Organic-inorganic composite films were prepared by adding different amount of nano-SiO2into water soluble acrylic resin (AC) on hot-dip galvanized steel sheet. The electrochemical behavior of nano SiO2 modified acrylic resin films in 5 % NaCl solution were studied by electrochemical measurement techniques. Results indicate when there are 8% ~ 12% SiO2 in organic film, it can shows an analogous passivation propertyin anodic polarization curves, increase anodic polarization function of galvanized coating, retarde lectrode reaction more efficiently. The reason is that either SiO2 in organic film occur chemical reaction with Zn, produce stable zinc silicate compound; or as aresult of dissolve-redeposit of SiO2 in the film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号