首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The microstructure and electrical properties of BaYxBi1−xO3 thick film negative temperature coefficient thermistors, fabricated by screen printing, were investigated. The sintered thick films were the single-phase solid solutions of the BaYxBi1−xO3 compounds with a monoclinic structure. The added Y2O3 led to a significant decrease in the grain size of the thermistors. The resistivity and coefficient of temperature sensitivity for the BaYxBi1−xO3 (0 ≤ x ≤ 0.15) thick film NTC thermistors decreased first with increasing x in the range of x < 0.04 and then increased with further increase in x.  相似文献   

2.
The photoluminescence (PL) properties of SrIn2O4:Eu3+,Gd3+ and SrIn2O4:Eu3+,Sm3+ are investigated in this work. When the Gd3+ ions are introduced in this compound, the average distance metal-oxygen is increased, and then the vibration of lattice is decreased. It results in that the nonradiation of Eu3+ is decreased. Therefore, the emissions of SrIn2O4:Eu3+ are increased. However, little of energy transfer occurs from Gd3+ to Eu3+ ions. When the Sm3+ ions are introduced into SrIn2O4:Eu3+, the energy transfers occur from the CTS of O2−-Sm3+ to Sm3+ and Eu3+ ions, from the host absorption to Eu3+ ions, and from Sm3+ to Eu3+ ions, but not from the host absorption to Sm3+ ions.  相似文献   

3.
The phase relation, microstructure, Curie temperatures (TC), magnetic transition, and magnetocaloric effect of (Gd1−xErx)5Si1.7Ge2.3 (x = 0, 0.05, 0.1, 0.15, and 0.2) compounds prepared by arc-melting and then annealing at 1523 K (3 h) using purity Gd (99.9 wt.%) are investigated. The results of XRD patterns and SEM show that the main phases in those samples are mono-clinic Gd5Si2Ge2 type structure. With increase of Er content from x = 0 to 0.2, the values of magnetic transition temperatures (TC) decrease linearly from 228.7 K to 135.3 K. But the (Gd1−xErx)5Si1.7Ge2.3 compounds display large magnetic entropy near their transition temperatures in a magnetic field of 0-2 T. The maximum magnetic entropy change in (Gd1−xErx)5Si1.7Ge2.3 compounds are 24.56, 14.56, 16.84, 14.20, and 13.22 J/kg K−1 with x = 0, 0.05, 0.1, 0.15, and 0.2, respectively.  相似文献   

4.
The pyrochlore-type phases with the compositions of SmDy1−xMgxZr2O7−x/2 (0 ≤ x ≤ 0.20) have been prepared by pressureless-sintering method for the first time as possible solid electrolytes. The structure and electrical conductivity of SmDy1−xMgxZr2O7−x/2 ceramics have been studied by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance spectroscopy measurements. SmDy1−xMgxZr2O7−x/2 (x = 0, 0.05, 0.10) ceramics exhibit a single phase of pyrochlore-type structure, and SmDy1−xMgxZr2O7−x/2 (x = 0.15, 0.20) ceramics consist of pyrochlore phase and a small amount of the second phase magnesia. The total conductivity of SmDy1−xMgxZr2O7−x/2 ceramics obeys the Arrhenius relation, and the total conductivity of each composition increases with increasing temperature from 673 to 1173 K. SmDy1−xMgxZr2O7−x/2 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest total conductivity value is about 8 × 10−3 S cm−1 at 1173 K for SmDy1−xMgxZr2O7−x/2 ceramics.  相似文献   

5.
We have prepared polycrystalline single-phase ACo2+xRu4−xO11 (A = Sr, Ba; 0 ≤ x ≤ 0.5) using the ceramic method and we have studied their structure, electrical resistivity and Seebeck coefficient, in order to estimate their power factor (P.F.). These layered compounds show values of electrical resistivity of the order of 10−5 Ωm and their Seebeck coefficients are positive and range from 1 μV K−1 (T = 100 K) to 20 μV K−1 (T = 450 K). The maximum power factor at room temperature is displayed by BaCo2Ru4O11 (P.F.: 0.20 μW K−2 cm−1), value that is comparable to that shown by compounds such as SrRuO3 and Sr6Co5O15.  相似文献   

6.
氯化物熔盐体系共电沉积法制备Mg-Li-Gd合金的研究   总被引:2,自引:0,他引:2  
在LiCl-KCl-MgCl2-Gd2O3熔盐体系中采用电化学共沉积法制备Mg-Li-Gd合金,借助循环伏安和计时电位技术对熔盐电化学行为进行探讨,并运用XRD,SEM,EDS和OM对所得合金进行测试.研究结果表明,Gd2O3在LiCl-KCl熔盐体系中几乎不溶,而在LiCl-KCl-MgCl2熔盐中有一定的溶解度,而...  相似文献   

7.
Nanocrystalline ZrNxOy thin films were deposited on p-type Si (100) substrates using hollow cathode discharge ion-plating (HCD-IP) and the films were annealed at 700 and 900 °C in the controlled atmosphere. The purpose of this study was to investigate the phase separation, phase transformation and the accompanying change of properties of the heat-treated ZrNxOy films deposited by ion plating. With the increase of oxygen flow rate ranging from 0 to 10 sccm, the primary phase of the as-deposited films evolved from ZrN to nearly amorphous structure and further to monoclinic ZrO2 (m-ZrO2). After heat treatment at 700 and 900 °C, phase transformation occurred in the samples deposited at 8 and 10 sccm O2, where a stoichiometric crystalline Zr2ON2 was found to derive from m-ZrO2 with dissolving nitrogen (m-ZrO2(N)). The hardness of the ZrNxOy thin films could be correlated to the fraction of Zr2ON2 + m-ZrO2. The film hardness decreased significantly as the fraction of ZrO+ Zr2ON2 exceeded ~ 60%, which was due to phase transition by increasing oxygen flow rate or phase transformation induced by heat treatment. The phase separation of m-ZrO2 from ZrN with dissolving oxygen (ZrN(O)) may relieve the residual stress of the ZrNxOy specimens deposited at 5 and 8 sccm O2, while direct formation of m-ZrO2 increased the stress of the film deposited at 10 sccm O2. On the other hand, the phase transformation from m-ZrO2(N) to Zr2ON2 by heat treatment at both 700 and 900 °C may effectively relieve the residual stress of the ZrNxOy films.  相似文献   

8.
Alternating current complex impedance spectroscopy studies were conducted on symmetrical cells of the type [gas, electrode/La1−x Sr x Ga1−y Mg y O3 (LSGM) electrolyte/electrode, gas]. The electrode materials were slurry-coated on both sides of the LSGM electrolyte support. The electrodes selected for this investigation are candidate materials for solid oxide fuel cell (SOFC) electrodes. Cathode materials include La1−x Sr x MnO3 (LSM), La1−x Sr x Co y Fe1−y O3 (LSCF), a two-phase particulate composite consisting of LSM and doped-lanthanum gallate (LSGM), and LSCF + LSGM. Pt metal electrodes were also used for the purpose of comparison. Anode material investigated was the Ni + Ce0.85Gd0.15O2 composite. The study revealed important details pertaining to the charge-transfer reactions that occur in such electrodes. The information obtained can be used to design electrodes for intermediate temperature SOFCs based on LSGM electrolytes. This paper was presented at the Fuel Cells: Materials, Processing, and Manufacturing Technologies Symposium sponsored by the Energy/Utilities Industrial Sector & Ground Transportation Industrial Sector and the Specialty Materials Critical Technologies Sector at the ASM International Materials Solutions Conference, October 13–15, 2003, in Pittsburgh, PA. The symposium was organized by P. Singh, Pacific Northwest National Laboratory, S.C. Deevi, Philip Morris USA, T. Armstrong, Oak Ridge National Laboratory, and T. Dubois, U.S. Army CECOM.  相似文献   

9.
Sintering resistance of a novel thermal barrier coating NdxZr1  xOy with Z dissolved in, where 0 < x < 0.5, 1.75 < y < 2 and Z is an oxide of a metal selected from Y, Mg, Ca, Hf and mixtures thereof, was studied. The coatings of NdxZr1  xOy and typical 7YSZ were deposited by electron beam physical vapor deposition (EB-PVD) and air plasma spray (APS). The samples with the coating system of EB-PVD NdxZr1 − xOy or 7YSZ overlaid onto a MCrAlY bond coat were cyclically sintered at 1107 °C for 706 hours. The freestanding coatings of EB-PVD NdxZr1  xOy and 7YSZ were isothermally sintered at 1371 °C for 500 hours. The microstructure of EB-PVD NdxZr1 − xOy before and after the sintering was evaluated and compared with EB-PVD 7YSZ. The sintering resistance of freestanding APS NdxZr1 − xOy coating was also investigated after isothermal sintering at 1200 °C for 50 and 100 hours. The results demonstrated that the new coatings of NdxZr1 − xOy applied with both EB-PVD and APS have higher sintering resistance than EB-PVD and APS 7YSZ, respectively.  相似文献   

10.
Rare-earth ions (Sm3+ or Eu3+) doped LiSrxBa1−xPO4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) f-f transition phosphor powders were prepared by a high temperature solid-state reaction. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the phase structure of the sample changes from LiBaPO4 to LiSrPO4 when x changes from 0 to 1.0. The excitation spectra indicate that only direct excitation of rare earth ions (Sm3+ or Eu3+) can be observed. The doped rare earth ions show their characteristic emission in LiSrxBa1−xPO4, i.e., Eu3+5D0-7FJ (J = 0, 1, 2, 3, 4), Sm3+4G5/2 → 6HJ (J = 5/2, 7/2, 9/2, 11/2), respectively. The dependence of the emission intensities of the LiSrxBa1−xPO4:Sm3+ and LiSrxBa1−xPO4:Eu3+ phosphors on the x value and Ln3+ (Ln3+ = Sm3+, Eu3+) concentration is also investigated.  相似文献   

11.
The influence of Zr substitution for Ti on the microwave dielectric properties and microstructures of the Mg(ZrxTi1−x)O3(MZxT) (0.01 ≤ x ≤ 0.3) ceramics was investigated. The quality factors of Mg(ZrxTi1−x)O3 ceramics with x = 0.01-0.05 were improved because the solid solution of a small amount of Zr4+ substitution in the B-site could increase density and grain size. An excess of Zr4+ resulted in the formation of a great deal of secondary phase that declined the microwave dielectric properties of MZxT ceramics. The temperature coefficient of resonant frequency (τf) of Mg(ZrxTi1−x)O3 ceramics slightly increased with increasing Zr content, and the variation in τf was attributed to the formation of secondary phases.  相似文献   

12.
Al2O3-Ce0.5Zr0.5O2 catalytic powders were synthesized by the coprecipitation (ACZ-C) and mechanical mixing (ACZ-M) methods, respectively. As-synthesized powders were characterized by XRD, Raman spectroscopy, surface area and thermogravimetric analyses. It was found that the mixing extent of Al3+ ions affected the phase development, texture and oxygen storage capacity (OSC) of the Ce0.5Zr0.5O2 powder. Single phase of ACZ-C could be maintained without phase separation and inhibit α-Al2O3 formation up to 1200 °C. The specific surface area value of ACZ-C (81.5 m2/g) was larger than that of ACZ-M (62.1 m2/g) and Ce0.5Zr0.5O2 (17.1 m2/g) powders, which were calcined at 1000 °C. In comparison with ACZ-C and Al2O3, which were calcined at high temperature (900–1200 °C), it was found that the degradation rate of specific surface area of ACZ-C was lower than that of Al2O3. ACZ-C sample showed a higher thermal stability to resist phase separation and crystallite growth, which enhanced the oxygen storage capacity property for Ce0.5Zr0.5O2 powders.  相似文献   

13.
Transition metal oxynitrides have become emerging decorative coating materials due to their adjustable coloration and high hardness and corrosion resistance. This research studied the effect of oxygen content on the coloration, mechanical properties and corrosion resistance of ZrNxOy thin films deposited on AISI 304 stainless steel using hollow cathode discharge ion plating (HCD-IP). The Zr/N/O ratios of the ZrNxOy films were determined using X-ray photoelectron spectroscopy (XPS). The color of the ZrNxOy thin film changed from golden yellow to blue and then slate blue with increasing oxygen content. X-ray diffraction (XRD) patterns revealed that phase separation of ZrN and m-ZrO2 occurred as the oxygen content reached 31.2 at.%. ZrN(O) (ZrN with dissolving oxygen) is dominant at oxygen content less than 18.1 at.%, while m-ZrO2 phase was prevailed at oxygen content above 40.3 at.%. Phase separation lowered the hardness of the ZrNxOy films as the fraction of ZrO2 was less than 40%. The residual stresses in ZrN phase was higher than that in ZrO2, and the residual stress decreased for the specimen containing 30 to 37% ZrO2. For the samples containing more than 44% ZrO2, the average residual stress was close to that in ZrO2 phase. The corrosion resistance was evaluated by salt spray test and potentiodynamic scan in two solutions: 0.5MH2SO4 + 0.05 M KSCN and 5% NaCl solutions. The results showed consistent trend in the two solutions. From the results of potentiodynamic scan, corrosion resistance increased as the packing density of the film increased, whereas the film thickness was not a crucial factor on corrosion current; moreover, the electrical conductivity of the film may be one of the significant factors in corrosion resistance. Results of salt spray tests suggested that the corrosion of ZrNxOy in NaCl may play an important role in corrosion resistance.  相似文献   

14.
ZnO has received much attention in the degradation and complete mineralization of environmental pollutants. For the purpose of increasing the photocatalytic efficiency of ZnO, Mg was doped into ZnO thin films.Zn1  xMgxO thin films were prepared by spray pyrolysis method on glass substrates. The deposition temperature was 500 °C. Mg concentration was varied in the range of 0.0 to 0.3 in intervals of 0.05. The pure ZnO films were polycrystalline with preferred orientation (100). Zn1  xMgxO becomes amorphous with increasing Mg concentration. The optical band gap of Zn1  xMgxO changes from 3.26 to 3.59 eV with increasing Mg content. Also, the photocatalytic activity increased with Mg, and the film with x = 0.3 showed the best result.  相似文献   

15.
In this study, the effect of Y2O3 additions on the microstructural and the physical properties of W-SiC composites was investigated. Powder blends of W—4 wt.% SiC, W—4 wt.% SiC—1 wt.% Y2O3 and W—4 wt.% SiC—5 wt.% Y2O3 were mechanically alloyed (MA'd) using a Spex mill for 24 h. MA'd composite powders were sintered under inert Ar and reducing H2 gas conditions at 1680 °C for 1 h. Microstructural and morphological characterizations of composite powders and sintered samples were carried out via SEM and XRD analyses. Furthermore, density measurements and hardness measurements of sintered samples were carried out. A highest Vickers microhardness value of 11.4 GPa was measured for the sintered W—4 wt.% SiC—5 wt.% Y2O3 while W—4 wt.% SiC sample possessed the highest relative density value of 97.7%.  相似文献   

16.
The formation of impurity LixNi1−xO when synthesizing spinel LiNi0.5Mn1.5O4 using solid state reaction method, and its influence on the electrochemical properties of product LiNi0.5Mn1.5O4 were studied. The secondary phase LixNi1−xO emerges at high temperature due to oxygen deficiency for LiNi0.5Mn1.5O4 and partial reduction of Mn4+ to Mn3+ in LiNi0.5Mn1.5O4. Annealing process can diminish oxygen deficiency and inhibit impurity LixNi1−xO. The impurity reduces the specific capacity of product, but it does not have obvious negative effect on cycle performance of product. The capacity of LiNi0.5Mn1.5O4 that contains LixNi1−xO can deliver about 120 mAh g−1.  相似文献   

17.
ZrNxOy thin films were deposited on AISI 304 stainless steel (304SS) substrates by reactive magnetron sputtering. The specimens were produced by sputtering a Zr target at 500 °C and the reactive gasses were N2 and O2 at various flow rates (ranging from 0 to 2 sccm). The purpose of this study was to investigate the effect of oxygen flow rate on the phase transition and accompanying mechanical properties of the ZrNxOy thin films. The oxygen contents of the thin films increased significantly with increasing oxygen flow rate. X-ray diffraction (XRD) revealed that the characteristics of the films can be divided into three zones according to the major phase with increasing oxygen content: Zone I (ZrN), Zone II (Zr2ON2) and Zone III (m-ZrO2). The hardness of the ZrNxOy films decreased with increasing oxygen content due to the formation of the soft oxide phase. Modified XRD sin2ψ method was used to respectively measure the residual stresses of ZrN, Zr2ON2 and m-ZrO2 phases. The results showed that the residual stress in ZrN was relieved as the oxygen content increased, and Zr2ON2 and m-ZrO2 were the phases with lower residual stress. Compositional depth profiles indicated that there was a ZrO2 interlayer near the film/substrates interface for all samples except the mononitride ZrN specimen. Contact angle was used as an index to assess the wettability of the film on substrate. The contact angles of ZrN, Zr2ON2 and m-ZrO2 on stainless steel were indirectly measured using Owens-Wendt method. The results showed that ZrO2 possessed the lowest wettability on 304SS among the three ZrNxOy phases, indicating that the ZrO2 interlayer may account for the spallation of the ZrNxOy films after salt spray tests.  相似文献   

18.
The starting materials of Al2O3, TiO2, ZrO2 and CeO2 nanoparticles were agglomerated into sprayable feedstock powders and plasma sprayed to form nanostructured coatings. There were net structures and fused structures in plasma sprayed nanostructured Al2O3–13 wt.%TiO2 coatings. The net structures were derived from partially melted feedstock powders and the fused structures were derived from fully melted feedstock powders. The nanostructured Al2O3–13 wt.%TiO2 coatings possessed higher hardness, bonding strength and crack growth resistance than conventional Metco 130 coatings which were mainly composed of lamellar fused structures. The higher toughness and strength of nanostructured Al2O3–13 wt.%TiO2 coatings were mainly related to the obtained net structures.  相似文献   

19.
Preparation of the Ti3Si1−xAlxC2 solid solution with x = 0.2-0.8 was investigated by self-propagating high-temperature synthesis (SHS) using TiC-, SiC-, and Al4C3-containing powder compacts. Due to the variation of reaction exothermicity with sample stoichiometry, the combustion temperature and reaction front velocity decreased with increasing Al content of Ti3Si1−xAlxC2 for the TiC- and Al4C3-added samples, but increased for the samples with SiC. In contrast to the formation of Ti3(Si,Al)C2 as the dominant phase for the TiC- and SiC-added samples, TiC was identified as the major constituent in the final products of samples adopting Al4C3. In addition, the evolution of Ti3(Si,Al)C2 was improved by increasing the Al content of the TiC- and SiC-added powder compacts, but deteriorated considerably upon the increase of Al4C3 in the Al4C3-containing sample.  相似文献   

20.
This paper proposes La1−xKxFeO3 prepared by self-propagating high-temperature synthesis (SHS) as an alternative to platinum catalysts for promoting diesel soot combustion. The catalytic property of eleven products SHSed with different substitution ratios of potassium (x = 0-1) was experimentally evaluated using a thermobalance. In the mass loss curves of the product, T50 was defined as the temperature at which the weight of the reference soot decreases to half its initial weight. The BET specific surface area of SHSed La1−xKxFeO3 depended on x strongly. All the products showed good oxidation catalytic activity. Despite having the smallest surface area (0.11 m2/g) among the obtained products, La0.9K0.1FeO3 (x = 0.1) was found to be the best catalyst with the lowest T50 (442 °C). T50 of La1−xKxFeO3 decreased with increasing x for x > 0.2. The products with x = 0.6 and 0.8 were the second-best catalysts in terms of their T50. Moreover, average apparent activation energy of La0.9K0.1FeO3 (x = 0.1) calculated by Friedman method using TG was as much as 61 kJ/mol lower than that of Pt/Al2O3 catalyst. In conclusion, potassium-substituted SHSed La1−xKxFeO3 can be used as an alternative to Pt/Al2O3 for soot combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号