首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 512 毫秒
1.
美国罗斯公司推出了最新获得专利的罗斯分散混合机(Ross Power Mix)。该机综合了双行星搅拌浆的混合搅拌功能和高速分散器的分散功能,能有效地分散、混合处理各种不同粘度的物料(最高粘度可达数百万厘泊)。双行星搅拌浆能将混合容器内壁上的高粘度物料推入到高速分散器的分散剪切齿  相似文献   

2.
《玻璃》1974,(4)
本系列混合机系采用蜗轮桨强制搅拌装置。由于装有多组搅拌叶片的蜗桨在搅拌罐内旋转,物料被强制搅拌而成均匀的配合料。每次搅拌周期不超过五分钟。本系列设备适用于玻璃原料及粉状物料的混合(不适用于块状物料及碎玻璃的混合),并具有搅拌质量好,生产效率高等优点。 KWQ750混合机主传动采用行星减速机构,用强制润滑系统润滑。 KWQ375混合机主传动采用蜗轮蜗杆减速机构。  相似文献   

3.
采用数值模拟与功率测试相结合的方法,研究直叶桨式粉体混合机搅拌过程及搅拌功率、扭矩的变化规律。对粉体混合机内球形颗粒的混合过程进行离散单元法DEM数值模拟,研究直叶桨式粉体混合机内搅拌转速、搅拌桨直径、桨叶数目等特性参数对粉体混合时搅拌功率和扭矩的影响,并拟合得到功率计算公式。搭建粉体搅拌试验台,测试粉体搅拌功率并与模拟结果比较。结果表明,直叶桨式粉体混合机内功率消耗与搅拌桨转速、搅拌桨直径、桨叶数目等特性参数有密切关系。同时,扭矩值和功率值与搅拌桨转速、搅拌桨直径和桨叶数目都呈正相关。实验得到了与模拟类似的扭矩-转速关系以及功率-转速关系,模拟值与测试值具有较好的吻合性,验证了所推导公式的准确性。  相似文献   

4.
<正> 美国纽约CharlesRoss公司最近研制成功一种新型混合机,型号为PD2。该混合机综合了常规碟型高速分散机种行星旋转桨叶的长处,当高速分散机和行星旋转桨叶运转时,它们既自转,又共同围绕一个共轴分转,从而使搅拌混合效率大大提高。这种新型混合机规格已有数种,生产能力最大的达  相似文献   

5.
化工生产中用于粘塑性流体混合的机械大多采用桨叶搅拌的形式,但是桨叶与液体之间的强烈摩擦限制了混合装置在某些行业中的应用,取而代之的是一种无桨混合机。为了指导化工设备无桨混合机的设计工作,首先要了解其内部流体的运动和掺混形式。并设计搭建无桨混合机实验台,测试无桨混合机内药浆重心和轴端振动,结合直接观察整个混合过程,揭示混合机内高粘塑性流体运动和掺混的一般规律。  相似文献   

6.
对新型双层桨气液搅拌釜的自吸分散机理进行分析,考察介质浓度、桨叶间距、桨叶组合对功耗性能的影响,并与表面充气分散时的功耗性能进行比较。结果表明:桨叶间距增大,下层桨向上层桨泵送的液体量减少,泵送液体所需的功耗增大;P型桨叶背后形成的气穴尺寸较DT桨的小,相对功率消耗更接近于1,更有利于气体在搅拌釜中分散与混合;自吸分散时,P∝N~2,即自吸分散较表面充气分散省功,在搅拌转速或输入功率相同时,气含率更高,气液分散性能更好。  相似文献   

7.
实验采用三叶后掠式桨叶和最新获得国家专利授权的一种具有内导流作用的搅拌桨进行比较,研究不同的装料系数下,搅拌釜混合效果情况。通过对两种搅拌桨在不同装料系数以及不同转数下的实验得到以下结论:(1)混合时间均随着装料系数的增大而增大,但随着搅拌转数的增大而减小;(2)循环次数随着装料系数的增加而减小,随着转数的增加而增大;(3)装料系数增大,搅拌桨的搅拌功增大;(4)挡板附近桨叶区粘釜量比远离桨叶区的粘釜量多;搅拌釜中的物料量对粘釜量有较大的影响,当液面高度升高时,搅拌混合效果变差,粘釜量减少。  相似文献   

8.
通过对双行星动力混合机搅拌桨的力学分析,并对搅拌过程中所受应力应变和变形规律进行研究分析,得出在搅拌过程中,越靠近搅拌桶底部,桨叶所受的压力越大,变形也越大;而最大应力与最大应变出现在搅拌方轴和换接器相连处。为以后的研究提供了理论参考依据。  相似文献   

9.
在直径为0.478 m的立式搅拌槽中,采用高岭土和水为物料,比较了四斜叶、六直叶涡轮等8种桨的固-液分散性能及搅拌功率(P)、桨组合形式对分散性能的影响规律. 结果表明,8种桨中分散效果最好的是六直叶涡轮桨和四斜叶桨,分散速率最快的是两叶CBY桨;分散速率与P1.08成正比;分散前期,搅拌功率增加,相对分散效果Y随之提高,当Y达到0.999以上,提高搅拌功率对搅拌效果几乎不起作用;采用分散速率较快(两叶CBY桨)与分散效果较好(四斜叶桨)的双桨组合,更适于连续操作过程.  相似文献   

10.
传统Rushton刚性桨常应用于过程工业中搅拌反应器内的气液分散过程,但由于桨叶背后易形成较大的气穴,气液混合效果较差。为了提高搅拌槽内气液两相的混合效果,提出了一种刚柔组合桨强化气液两相的分散过程。利用Lab VIEW软件处理刚性桨和刚柔组合桨体系中气液混合过程的压力脉动信号,通过Matlab软件编程计算最大Lyapunov指数(LLE),分析气液混合体系的混沌混合行为,同时,对刚性桨和刚柔组合桨体系中的相对搅拌功耗、整体气含率、局部气含率进行测量。结果表明,在功耗为170 W,通气量为10 m3?h-1条件下,与刚性桨相比,刚柔组合桨能够通过刚-柔-流的耦合作用促进桨叶能量的传递过程,提高搅拌体系的混沌混合程度,刚柔组合桨体系的LLE提高了8.89%。同时,在相同操作条件下,与刚性桨相比,刚柔组合桨能够有效提高相对搅拌功耗以及搅拌槽内的整体气含率和局部气含率,且搅拌槽内气体分散更为均匀。  相似文献   

11.
双层桨气液搅拌反应槽气液分散特性   总被引:1,自引:0,他引:1  
采用搅拌功率与氧传质系数方法,对一双层桨搅拌反应槽的自吸分散和表面充气分散性能进行研究.比较了两种桨叶组合在两种分散方式下的气相分散临界转速、搅拌功率及两种桨叶组合自吸分散时的气含率和气液传质系数.结果表明,六叶圆盘直叶桨和六叶圆盘斜叶桨的组合在自吸分散时具有较优的分散性能.  相似文献   

12.
李岩  刘雪东  钱建峰 《化工进展》2013,32(9):2056-2060
采用CFD方法模拟了具有相同桨径、不同桨叶折角和叶宽结构的6种新型搪玻璃搅拌桨的搅拌特性。考察了挡板、桨叶离底高度对釜内流场的影响,基于此分析了桨叶折角、叶宽对速度分布的影响。对模拟得到的搅拌功率和混合时间进行了实验验证,并与传统搪玻璃桨式搅拌器进行比较。结果表明:①新型桨叶在加挡板且桨叶离底高度为450 mm时,搅拌效果最佳;②随桨叶折角、叶宽的增大,桨叶区轴向、径向和切向速度均呈增大趋势,当桨叶折角为45°、叶宽为95 mm时,釜内混合效果最好;③随转速增大,搅拌功率呈增大趋势,混合时间呈减小趋势,新型桨明显比传统桨混合性能好,桨叶折角为30°、叶宽95 mm时功率消耗最低,桨叶折角为35°、叶宽95 mm时混合时间最短。  相似文献   

13.
搅拌槽内气液两相混沌混合及分散特性   总被引:1,自引:0,他引:1       下载免费PDF全文
传统Rushton刚性桨常应用于过程工业中搅拌反应器内的气液分散过程,但由于桨叶背后易形成较大的气穴,气液混合效果较差。为了提高搅拌槽内气液两相的混合效果,提出了一种刚柔组合桨强化气液两相的分散过程。利用LabVIEW软件处理刚性桨和刚柔组合桨体系中气液混合过程的压力脉动信号,通过Matlab软件编程计算最大Lyapunov指数(LLE),分析气液混合体系的混沌混合行为,同时,对刚性桨和刚柔组合桨体系中的相对搅拌功耗、整体气含率、局部气含率进行测量。结果表明,在功耗为170 W,通气量为10 m3·h-1条件下,与刚性桨相比,刚柔组合桨能够通过刚-柔-流的耦合作用促进桨叶能量的传递过程,提高搅拌体系的混沌混合程度,刚柔组合桨体系的LLE提高了8.89%。同时,在相同操作条件下,与刚性桨相比,刚柔组合桨能够有效提高相对搅拌功耗以及搅拌槽内的整体气含率和局部气含率,且搅拌槽内气体分散更为均匀。  相似文献   

14.
传统刚性搅拌桨通过对流体的剪切作用实现能量的传递,而刚柔组合搅拌桨可通过其多体运动行为强化能量传递。基于搅拌桨桨叶与流体之间的耦合运动作用,结合ANSYS Workbench仿真平台,采用双向流固耦合方法,模拟计算了刚性搅拌桨与刚柔组合搅拌桨桨叶的等效应力和总变形量,研究了流场的宏观结构;并通过测定混合时间和计算搅拌桨功耗对比分析了两种不同搅拌体系的混合行为。结果表明:刚柔组合搅拌桨使体系的混合时间缩短了近32%,搅拌桨功耗下降了7%,其桨叶尖端的变形量是刚性搅拌桨的105倍,其应力比刚性搅拌桨增加了83%;与刚性搅拌桨相比,刚柔组合搅拌桨在流固耦合作用下对流体的作用力更大,能够更好地传递能量,增强流体运动,强化流体混合。  相似文献   

15.
用CFD软件模拟了3种传统径向流搅拌桨—平直叶式、半圆管式和非对称抛物线式搅拌桨的功率消耗和泵送能力等搅拌性能,研究了不同桨叶结构和尺寸对搅拌桨功率准数和泵送能力的影响,设计扇环抛物面桨叶结构,比较了新型桨与传统桨的功率准数、泵送效率等搅拌性能和轴向投影面积率的差异.结果表明,桨叶外缘顶点曲率增大可减小功率准数和提高泵送效率,轴向高度减小可使功率准数降低但对泵送效率提升不大.基于空间自由曲面设计的带有新型非对称扇环抛物面桨叶的搅拌桨操作性能最佳,比非对称抛物线式搅拌桨功率准数下降30.8%,泵送效率提高22.6%.新型搅拌桨轴向投影面积率比非对称抛物线式搅拌桨增加21.5%,能用于气液分散操作.  相似文献   

16.
翟甜  郝惠娣  秦佩  冯荣荣  马腾 《广东化工》2012,39(11):29-30
运用计算流体动力学(CFD)方法对双层桨搅拌槽内部流场进行数值模拟。考察了流体在不同桨叶类型、不同桨叶间距对搅拌槽内宏观流动场的影响。研究发现:流体在桨叶间距为150 mm的双层桨内部流场流动效果好。在此间距的基础上得出流体在六圆盘上斜叶桨的搅拌槽内比六圆盘直叶桨搅拌槽内混合效果好。  相似文献   

17.
详细分析了工业合成醋酸反应器中的机械搅拌过程,描述了气液分散搅拌过程中搅拌桨叶的选择和计算。对醋酸反应器这样复杂的气-液反应混合过程,必须采用合适的机械搅拌器。目前采用最多的是径向流和轴向流相结合的多层搅拌桨叶组合形式的搅拌器。搅拌桨的计算和设计对保证醋酸反应中充分的气-液分散混合并达到良好的气-液传质过程十分重要。不同大小醋酸反应釜的搅拌器必须根据不同生产处理量和醋酸装置的工艺条件进行设计和选型。  相似文献   

18.
运用计算流体动力学(CFD)方法对双层桨自吸式气液分-散搅拌槽进行单相流数值模拟。考察了不同气体分散通道叶片角度、不同下层桨类型、不同桨叶间距对搅拌槽内宏观流动场的影响。研究发现:气体分散通道叶片角度为30°时,流体在上层桨所在平面处的流动没有出现较大的扭曲流动,漩涡较小,能量损耗较少。下层桨为六叶上斜叶桨时,下层桨具有较强的泵送能力,能够将液体有效的泵送到上层桨周围。桨叶间距增大,使槽内轴向循环流动范围增大,但是有可能造成下层桨泵送能力的降低。  相似文献   

19.
搅拌混合装置广泛应用在油漆生产的各种作业中。同一种物料因采用不同的搅拌器,搅拌效果和动力消耗差异很大。本文扼要介绍油漆生产中常用的和新型的搅拌器。一、常用搅拌器 1.桨式搅拌器较常见的是平板桨和推进桨两种,如图1a、b所示。油漆生产的搅拌桨叶直径200~500毫米之间,为容器内径的1/3到2/3。桨  相似文献   

20.
搅拌反应器中混合隔离区的存在是强化流体混合的主要障碍。打破搅拌槽中的对称性流场结构,破坏混合隔离区,可以提高流体混合效率。采用Matlab软件编程计算最大Lyapunov指数(LLE)和多尺度熵(MSE),比较了不同桨叶类型、柔性片长度、柔性片数量和桨叶离底高度以及转速对流体混合的影响。结果表明,长短叶片复合型刚柔桨(RF-LSB)桨叶通过刚柔耦合错位连接,柔性片的形变与随机振动对流体的非稳态扰动,使流场结构不稳定性和不对称性增强,强化了流体混合效果。当柔性片数量为3,搅拌转速为90 r/min时,RF-LSB体系比刚性桨和刚柔桨体系的LLE值分别提高了20.22%和7.98%;三种体系[RF-LSB(柔性片数量为3)、刚性桨和刚柔桨体系]的混合时间(θm)与单位体积功耗(Pv)呈指数型关系,当Pv相同时,RF-LSB(柔性片数量为3)的θm最小,表明RF-LSB(柔性片数量为3)更有利于流体混沌混合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号