首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(11-12):3003-3019
Abstract

Carbon dioxide was absorbed into aqueous solution of sodium glycinate (SG) at different SG concentrations, CO2 partial pressures, and temperatures in the range of 0.5–3.0 kmol/m3, 25–101.3 kPa, and 298–318 K, respectively, using a stirred semi-batch vessel with a planar gas-liquid interface. Both the reaction order and rate constant are determined from gas absorption rates under the fast reaction regime. The reaction was found to be first order with respect to both CO2 and SG. The activation energy for the CO2-SG reaction has been found to be 59.8 kJ/mol. The second-order reaction rate constants were used to obtain the theoretical values of absorption rate based on the film theory.  相似文献   

2.
《分离科学与技术》2012,47(4):497-507
Carbon dioxide was absorbed into aqueous solution of potassium threonate (PT) at different concentrations of PT and CO2, and temperatures in the range of 0.1–1.0 kmol/m3, 10.1–101.3 kPa, and 293-313 K, respectively, using a stirred semi-batch vessel with a planar gas-liquid interface. Both the reaction order and rate constant were determined from gas absorption rates under the fast pseudo-first-reaction regime. The reaction was found to be first order with respect to both CO2 and PT, and its activation energy has been found to be 40.6 kJ/mol. From a comparison of the reaction kinetics by the overall reaction scheme with those by the elementary reaction scheme based on the zwitterions mechanism, the overall reaction between CO2 and PT has been found to be equivalent to the formation of zwitterions.  相似文献   

3.
Differential rates of CO2 adsorption into 0.90, 0.47 and 0.24 M aqueous solutions of 2-(diethylamino)ethanol (DEAE) were measured at 323 K over a wide range of carbonation ratios. A rigorous thermodynamic model was used to define species activities which were coupled with Danckwerts' gas-liquid reaction model to deduce the kinetics. The reaction of CO2 with this highly basic tertiary amine occurs by two pathways: (1) a minor path via the CO2 reaction with hydroxide ion and (2) a predominant reaction pathway that can be characterized by its first order dependency on the free amine concentration. The second reaction was proposed to involve an internal salt-like intermediate,.  相似文献   

4.
The absorption of CO2 into aqueous solution of 2-(1-piperazinyl)-ethylamine (PZEA) were studied at 303, 313, and 323 K within the amine concentration range of 0.083-1.226 kmol m−3 using a wetted wall column absorber. The experimental results were used to interpret the kinetics of the reaction of CO2 with PZEA within the amine concentration range of 0.150-1.226 kmol m−3 for the above mentioned temperature range. Based on the pseudo-first-order condition for the CO2 absorption, the overall second order reaction rate constants were determined from the kinetic measurements. The reaction order was found to be in between 0.99 and 1.03 with respect to amine for the later mentioned concentration range. The kinetic rate parameters were calculated and presented at each experimental condition. The second-order rate constants k2, were obtained as 31867.6, 56354.2, and 100946 m3 kmol-1 s-1 at 303, 313, and 323 K, respectively, with activation energy of 47.3 kJ mol−1. This new amine in the field of acid gas removal can be used as an activator by mixing with other alkanolamine solvents due to its very high rate of reaction with CO2.  相似文献   

5.
The reaction rates of CO2 with an innovative CO2‐capturing organic solvent (CO2COS), consisting of blends of 2‐tert‐butyl‐1,1,3,3‐tetramethylguanidine (BTMG) and 1‐propanol, were obtained as function of BTMG concentration and temperature. A stopped‐flow apparatus with conductivity detection was used. The reaction was modeled by means of a modified termolecular reaction mechanism which resulted in a second‐order rate constant, and activation energies were calculated for a defined temperature range. Quantum chemical calculations at the B3LYP/6‐31G(d) level also produced the activation energy of this reaction system which strongly supports the experimental findings.  相似文献   

6.
N‐Ethylethanolamine (EEA) and N,N‐diethylethanolamine (DEEA) represent promising candidate alkanolamines for CO2 removal from gaseous streams, as they can be prepared from renewable resources. In this work, the reaction rate constant for the reaction between CO2 and EEA was determined from the absorption rate measurements of CO2 in a blend comprising DEEA, EEA and H2O. A stirred‐cell reactor with a plane, horizontal gas‐liquid interface was used for the absorption studies. While the DEEA concentration in the formulated solution was varied in the range of 1.5–2.5 kmol/m3, the initial EEA concentration was 0.1 kmol/m3. A zwitterion mechanism for EEA and a base‐catalyzed hydration mechanism for DEEA were used to describe the reaction kinetics. At 303 K, the second‐order reaction rate constant for the CO2 reaction with EEA was found to be 8041 m3/(kmol s). The liquid‐side mass transfer coefficient was also estimated, and its value (0.004 cm/s) is in line with those typical of stirred‐cell reactors.  相似文献   

7.
The reaction kinetics of carbon dioxide and CO2‐binding organic liquids (CO2BOLs) promoted by piperazine (PZ) and its derivatives were investigated experimentally by stopped‐flow conductimetry. The study was carried out at 298 K and for a concentration range of 0–0.25 kmol m?3 of PZ, 1‐(2‐aminoethyl)piperazine (AEPZ) or 1‐(2‐hydroxyethyl)piperazine (NHEPZ) while the superbase (1,1,3,3‐tetramethylguanidine or 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) concentrations were kept constant at 10.0 wt %. Based on pseudo‐first‐order reaction conditions, the intrinsic reaction rate data were analyzed according to a modified termolecular reaction mechanism. The results showed that the rate of reaction between CO2BOLs and CO2 could be significantly enhanced by blending with small amounts of PZ, NHEPZ or AEPZ as promoters.  相似文献   

8.
The absorption of CO2 from a mixture of CO2/N2 gas was carried out using a flat-stirred vessel and the polytetrafluoroethylene hollow fiber contained aqueous 2-amino-2-methyl-1-propanol (AMP) solution. The reaction of CO2 with AMP was confirmed to be a second order reversible reaction with fast-reaction region. The mass transfer resistance in the membrane side obtained from the comparison of the measured absorption rates of CO2 in a hollow fiber contained liquid membrane with a flat-stirred vessel corresponded to about 90% of overall-mass-transfer resistance. The mass transfer coefficient of hollow fiber phase could be evaluated, which was independent of CO2 loading.  相似文献   

9.
The hydrogenation of C, CO, and CO2 has been studied on polycrystalline cobalt foils using a combination of UHV studies and atmospheric pressure reactions in temperature range from 475 to 575 K at 101 kPa total pressure. The reactions produce mainly methane but with selectivities of 98, 80, and 99 wt% at 525 K for C, CO, and CO2, respectively. In the C and CO2 hydrogenation the rest is ethane, whereas in CO hydrogenation hydrocarbons up to C4 were detected. The activation energies of methane formation are 57, 86, and 158 kJ/mol from C, CO, and CO2, respectively. The partial pressure dependencies of the CO and CO2 hydrogenation indicate roughly first order dependence on hydrogen pressure (1.5 and 0.9), negative first order on CO (–0.75) and zero order on CO2 (–0.05). Post reaction spectroscopy revealed carbon deposition from CO and oxygen deposition from CO2 on the surface above 540 K. The reduction of cobalt oxide formed after dissociation of C-O bonds on the surface is proposed to be the rate limiting step in CO and CO2 hydrogenation.  相似文献   

10.
In order to understand the effect of SO2 on the CO2 capture performance under pressurized carbonation conditions, tests by orthogonal design were carried out in a calcination/pressurized carbonation reactor system. The effects of variables such as carbonation temperature, carbonation pressure, SO2 concentration, CO2 concentration, and the number of cycles on carbonation and sulfation were investigated. A range method was employed for analysis. Phase structure and scanning electron microscopy images were measured as supplement for a reaction study. Temperature increase enhanced the SO2 capture, leading to a rapid decay in CO2 uptake. The carbonation pressure had a stronger effect on the CO2 uptake than the temperature. SO2 uptake increased rapidly with increasing pressure while CO2 uptake decreased.  相似文献   

11.
A stopped‐flow apparatus was used to measure the kinetics of carbon dioxide (CO2) absorption into aqueous solution of 1‐diethylamino‐2‐propanol (1DEA2P) in terms of observed pseudo‐first‐order rate constant (ko) and second‐order reaction rate constant (k2), in this work. The experiments were conducted over a 1DEA2P concentration range of 120–751 mol/m3, and a temperature range of 298–313 K. As 1DEA2P is a tertiary amine, the base‐catalyzed hydration mechanism was, then, applied to correlate the experimental CO2 absorption rate constants obtained from stopped‐flow apparatus. In addition, the pKa of 1DEA2P was experimentally measured over a temperature range of 278–333 K. The Brønsted relationship between reaction rate constant (obtained from stopped‐flow apparatus) and pKa was, then, studied. The results showed that the correlation based on the Brønsted relationship performed very well for predicting the absorption rate constant with an absolute average deviation of 5.2%, which is in an acceptable range of less than 10%. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3502–3510, 2014  相似文献   

12.
The rate of absorption of pure CO2 into equimolar phosphate (pH = 6.6 and 1 1) and carbonate (pH ≈ 9.6) buffers in the presence of crude carbonic anhydrase has been measured in a stirred cell at a temperature range of 5-35°C and at atmospheric pressure. Some experiments with carbonate buffer were also repeated in a wetted wall column.Experimental results were analysed using classical gas absorption with chemical reaction theory in order to extract information about the kinetics of the enzymic hydration of CO2 and the catalytic power of carbonic anhydrase. At high pH-values (9.6-11.1) this reaction is first order in CO2 the reaction rate constant being proportional to enzyme concentration with a rate constant of about 0.90 1/mg sec at 25°C and with an activation energy of 9.0 kcal/g mole.At low pH-values (pH ≈ 6.5-6.7) the catalytic power of the enzyme is considerably reduced and the results are not compatible with a simple first order reaction mechanism.  相似文献   

13.
The low-temperature oxidation of five coals, ranging in rank from subbituminous to anthracite, was studied in the temperature range 30–250 °C, and the reaction kinetics were elucidated. The reaction rates were independent of particle diameter <1 mm. The orders of reaction for CO2 and CO formation were 0.50 and 0.54, respectively, with respect to oxygen. Activation energies of 51.5–59.4 kJ mol?1 were obtained for the CO2 and CO formation reactions. The rates of formation of CO2 and CO were correlated to the internal surface area and the oxygen contents of the coals. It was found that pores having radii >100 Å, and the oxygen-containing groups which decompose to CO2 and/or CO, were playing important roles in low-temperature oxidation of coals.  相似文献   

14.
The kinetics of the CO2 reforming of methane was investigated in the temperature range 700–850°C at normal pressure with a 1:1 mixture of CH4 and CO2 on Ir/Al2O3 catalysts. The feed composition was kept constant to avoid a change in mechanism associated with composition changes. Various rate models were fitted to the experimental data by numerically integrating the rate equations. All rate models included the reverse water gas shift reaction as the most important side reaction at these reaction conditions. The best agreement was obtained with a rate model based on the stepwise mechanism, where in the rate-determining step methane is decomposed to hydrogen and active carbon followed by the direct and fast conversion of this active carbon with CO2 to 2 CO. This model is also the first and only one containing a complete subset of reactions necessary to describe the network of reactions known to occur at these reaction conditions. Comparable fit quality was obtained with a simple first order model and with a model based on a Langmuir-Hinshelwood rate expression, where the latter provided physically meaningless parameters. Values of the reaction parameters are given for the 5 best rate models studied.  相似文献   

15.
The reactivities to CO2 of four chars derived from Australian coals at 610 °C, were measured thermogravimetrically. Reaction rates in 100% CO2 (total pressure, 101 kPa) varied from 0.026 mg h?1 mg?1 at 803 °C for char derived from a Lithgow coal to 6.3 mg h?1 mg?1 at 968 °C for a Millmerran coal char. Activation energies for the four chars were in the range 219–233 kJ mol?1. The results show that for Lithgow (Hartley Vale) coal char, reactivity increases with CO2 concentration and decreasing particle size. The apparent reaction order for this char with respect to CO2 concentration was found to be 0.7. For different chars, reactivity is inversely proportional to the rank of the parent coal. No general correlation has been established between total mineral content (ash) and char reactivity.  相似文献   

16.
CO2 absorption into aqueous solutions of two tertiary alkanolamines, namely, MDEA and DMEA with and without carbonic anhydrase (CA) was investigated with the use of the stopped‐flow technique at temperatures in the range of 293–313 K, CA concentration varying from 0 to 100 g/m3 in aqueous MDEA solution with the amine concentration ranging from 0.1 to 0.5 kmol/m3, and CA concentration varying from 0 to 40 g/m3 in aqueous DMEA solution with the amine concentration ranging from 0.05 to 0.25 kmol/m3. The results show that the pseudofirst‐order reaction rate (k0, amine; s?1) is significantly enhanced in the presence of CA as compared with that without CA. The enhanced values of the kinetic constant in the presence of CA has been calculated and a new kinetics model for reaction of CO2 absorption into aqueous tertiary alkanolamine solutions catalyzed by CA has been established and used to make comparisons of experimental and calculated pseudo first‐order reaction rate constant (k0, with CA) in CO2‐MDEA‐H2O and CO2‐DMEA‐H2O solutions. The AADs were 15.21 and 15.17%, respectively. The effect of pKa on the CA activities has also been studied by comparison of CA activities in different tertiary amine solutions, namely, TEA, MDEA, DMEA, and DEEA. The pKa trend for amines were: DEEA > DMEA > MDEA > TEA. In contrast, the catalyst enhancement in amines was in the order: TEA> MDEA> DMEA> DEEA. Therefore, it can be seen that the catalyst enhancement in the amines decreased with their increasing pKa values. © 2017 American Institute of Chemical Engineers AIChE J, 2017  相似文献   

17.
The CO2 absorption rate into aqueous N-methyldiethanolamine solutions was measured using a stirred cell with a flat gas-liquid interface. The measurements were performed in the temperature range of 293.15 to 333.15 K for various amine concentrations and CO2 partial pressures. A numerical model of mass-transfer with complex chemical reactions based on the film theory was developed to interpret the experimental results. The model predictions have been found to be in good agreement with the experimental values of CO2 absorption rates. A comparison is made between the enhancement factor predicted from the detailed model and the approximate solution of mass transfer equations with chemical reaction. The numerical results indicate that under the present experimental conditions, the effect of the reaction between CO2 and OH? on the observed mass transfer rates is negligible. The detailed mass transfer model was used for simulating the CO2 absorption process in terms of the enhancement factor under a variety of operating conditions.  相似文献   

18.
The use of H2SO4 in boric acid production from colemanite mineral has several problems, related to product impurities, corrosion and environmental discharge limits. To overcome these problems and to increase extraction efficiency of boric acid, heterogeneous reaction between colemanite and CO2 dissolved in H2O was studied at and above supercritical CO2 conditions. Supercritical conditions enhanced the extraction efficiency of boric acid from colemanite mineral, with 96.9% boric acid extraction efficiency being obtained from CO2–colemanite reaction at 60 °C, for 2 h of reaction time for particles in the range of +20–40 μm. A powder crystallized from filtrate of reaction was determined as H3BO3 and the solid formed at the end of reaction was characterized mostly as CaCO3 according to FTIR, XRD, TGA and SEM analyses. The use of supercritical CO2 as a leaching agent in colemanite does not only produce boric acid but also helps to reduce the amount of CO2 in the atmosphere. Based on these facts, supercritical CO2 as extractant makes this process green and sustainable for recovering boric acid from boron minerals.  相似文献   

19.
The reforming of CH4 with CO2 over supported Rh catalysts has been studied over a range of temperatures (550–1000 K). A significant effect of the support on the catalytic activity was observed, where the order was Rh/Al2O3>Rh/TiO2>Rh/SiO2. The catalytic activity of Rh/SiO2 was promoted markedly by physical mixing of Rh/SiO2 with metal oxides such as Al2O3, TiO2, and MgO, indicating a synergetic effect. The role of the metal oxides used as the support and the physical mixture may be ascribed to the promotion in dissociation of CO2 on the surface of Rh, since the CH4 + CO2 reaction is first order in the pressure of CO2, suggesting that CO2 dissociation is the rate-determining step. The possible model of the synergetic effect was proposed.  相似文献   

20.
The polymerization kinetics of methyl methacrylate (MMA) under supercritical fluid CO2 was studied by using high‐pressure DSC. The results indicate that CO2 can significantly reduce the cage effect and improve the chain propagation reactions, with the observed solvent‐like effects being enhanced by increased CO2 pressures. The polymerization of MMA under isothermal conditions and 56 atm of CO2 was characterized by a first‐order kinetic rate expression over the conversion range 20–80%. The apparent activation energy for the reaction was found to be 51.6 kJ/mol, which is less than the value reported under ambient conditions (68.2 kJ/mol). The polymerization kinetics were also evaluated under nonisothermal conditions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1236–1239, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号