首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorbents for semidry-type flue gas desulfurization (FGD) process can be synthesized by mixing coal fly ash, calcium oxide, and calcium sulfate in a hydration process. As sorbent reactivity is directly correlated with the specific surface area of the sorbent, reacting temperature, concentration of the reacting gas species and relative humidity, two major aim in the development of a kinetic model for the FGD process are to obtain an accurate model and at the same time, incorporating all the parameters above. Thus, the objective of this work is to achieve these two aims. The kinetic model proposed is based on the material balance for the gaseous and solid phase using partial differential equations incorporating a modified surface coverage model which assumes that the reaction is controlled by chemical reaction on sorbent grain surface. The kinetic parameters of the mathematical model were obtained from a series of experimental desulfurization reactions carried out under isothermal conditions at various operating parameters; inlet concentration of SO2 (500 ppm  C0,SO2  2000 ppm), inlet concentration of NO (250 ppm  CO,NO  750 ppm), reaction temperature (60 °C  T  80 °C) and relative humidity (50%  RH  70%). For a variety of initial operating conditions, the mathematical model is shown to give comparable predictive capability when used for interpolation and extrapolation with error less than 7%. The model was found useful to predict the daily operation of flue gas desulfurization processes by using CaO/CaSO4/coal fly ash sorbent to remove SO2 from flue gas.  相似文献   

2.
A thorough characterization of mordenite zeolites containing framework Ga and Al atoms over the entire compositional range 0  Ga/(Ga + Al)  1 prepared under wholly inorganic conditions has been done by using powder X-ray diffraction, elemental analysis, N2 adsorption, scanning and transmission electron microscopies, multinuclear MAS NMR, X-ray photoelectron spectroscopy, and X-ray absorption fine structure. Unlike the case of their as-made Na+ form, calcination of the -exchanged form of Ga-substituted mordenite materials at elevated temperatures leads to a severe extraction of framework Ga atoms from the tetrahedral positions. Most of the extraframework Ga species were found to remain tetrahedrally coordinated within mordenite micropores in a highly dispersed manner and to become octahedrally coordinated under dehydrating conditions.  相似文献   

3.
A series of as-synthesized molecular sieves have been tested and revealed useful as basic catalysts for Knoevenagel condensation under mild conditions. In order to understand the role of the Si/Al ratio, the structure, porosity and template agent, fifteen structures were synthesized and studied in this reaction. Siliceous and large pore molecular sieves showed high conversion levels (97%), while aluminum zeolites, even when containing large amount of organic material, showed distinct activity behavior, which was mainly dependent on the amount of framework silicon. This result, in addition to literature data, indicated that most likely siloxy anions (SiO) are the basic active sites. XPS measurements of these hybrid organic–inorganic catalysts showed that O1s binding energy is influenced by the presence of organic template, leading to the conclusion that they are interacting with framework oxygen, possibly balancing framework anions. Calcined siliceous molecular sieves, which had only silanol groups (SiOH), showed negligible catalytic activity (lower than 2%). As-synthesized siliceous molecular sieves have proven to be useful for basic heterogeneous catalysis, particularly for the synthesis of fine chemicals or for catalytic processes demanding strong basic sites.  相似文献   

4.
Lead zirconate titanate—Pb(Zr0.45Ti0.55)O3 thin films are grown on Pt1 1 1/Ti/SiO2/Si1 0 0 substrates by a sol–gel method with 1 0 0/0 0 1 and 1 1 1 preferred orientations. Film orientation was controlled mainly by the annealing process and temperature. Films with 1 0 0/0 0 1 orientation consist of a uniform microstructure with micron size grains, whereas films with 1 1 1 orientation contain sub-micron grains. The electrical properties were influenced markedly by the microstructure and orientation of the films. The 1 1 1 oriented films exhibit a square-like hysteresis loop with remnant polarization (Pr) reaching 46 μC/cm2 under 550 kV/cm, whereas 1 0 0/0 0 1 oriented films have a Pr of 20 μC/cm2 with more slim hysteresis curves. Aging of the precursor solutions resulted in films growing with 1 0 0/0 0 1 texture and displaying inferior electrical properties.  相似文献   

5.
We report a simple, fast and reliable non-covalent route of functionalization of macroscopic carbon nanotubes (CNTs) surfaces based on the π-stacking of CNTs sidewall with fluorescein derivatives (i.e., amino- and isothiocyanate-). The electrochemiluminescent emission of Ru(bpy)32+ labels bearing –COOH and –NH2 side groups coupled with colorimetric and XPS measurements allowed to estimate the quantity of –NH2 and –NCS functions obtained. The evaluation of reactivity suggests that functionalized CNTs substrates, in particular those carrying –NCS groups, are suitable to covalently bind probe molecules such as proteins and oligonucleotides, thus opening up the possibility of future application in genomics and proteomics fields.  相似文献   

6.
A series of π-conjugated poly(aryleneethynylene)s (PAEs) containing two or three different arylene units in the main chain have been prepared by palladium-catalyzed coupling reactions. The PAEs consist of 2,5-dihexyloxy-1,4-phenylene diethynylene (–CC–C6H2(OC6H13)2-p-CC–; C6H13 = hexyl) units with alternating arylene (–Ar–) units. Various kinds of arylenes, including 9,10-dihydrophenanthrene-2,7-diyl (Phen), pyridine-2,5-diyl (Py), thiophene-2,5-diyl (Th), anthracene-9,10-diyl (Ant), and 2,1,3-benzothiadiazole-4,7-diyl (BTdz), are used as the –Ar– units. The obtained PAEs were soluble in organic solvents by virtue of the attached hexyloxy side chains, and were characterized by NMR, IR, GPC, and UV–vis absorption and photoluminescence (PL) spectroscopy. The cooperation of different polymer segments induces variations in the electronic structure of the PAEs that show π–π* absorption peaks in the range of 380–530 nm and PL emission peaks in the range of 430–610 nm with quantum yields of 5–55% in their solutions. The UV–vis and PL peaks of the PAEs shifted to a longer wavelength in films and in colloidal solutions, indicating the occurrence of intermolecular electronic interactions by aggregation. In Ant-containing PAEs, the PL of the polymer chain was entirely replaced with a red-shifted PL emission assignable to the Ant segments due to intramolecular energy transfer.  相似文献   

7.
Thin films of organic pigments were prepared at higher than pH 1 by the contact plating method using an anionic surfactant (AZNa, first figure of this article (part c) (n = 4)) containing an azobenzene moiety. The effects of hydrophilic group of the surfactants on the rate of following reaction of the reduction product were studied by cyclic voltammetry. The positive shift of the reduction peak potential of AZNa compared to those of cationic and non-ionic surfactants was ascribed to higher rate of following reaction of reduction product due to the presence of the anionic hydrophilic group of the surfactant. The present investigation revealed that the anionic hydrophilic group accelerates the cleavage of the NN bond of the azobenzene group. This phenomenon enabled us to prepare the organic thin film at higher pH condition.  相似文献   

8.
The protonation scheme and the hydrogen bond connectivity in the structure of jennite were investigated by ab initio molecular dynamics simulations. The calculated statistics of hydrogen bonds at ambient conditions is consistent with the protonation scheme proposed by Bonaccorsi et al. (2004) based on the bond valence theory. The protons in the system are associated with the 2Ca–OH linkage and H2O molecules. The dangling Si–O bond on the bridging tetrahedra is de-protonated. The proton dynamics revealed in the molecular dynamic simulations explains the apparent discrepancies in the NMR and X-ray diffraction studies of jennite.  相似文献   

9.
Mesoporous nanocrystalline anatase was prepared hydrothermally employing P123 as structure-directing agent. Ethylene glycol was used as a key synthesis parameter to fine tune the morphology, crystal size and pore size of the resultant mesophases. The incorporation of EG in the synthesis gel resulted in the formation of 1–2 μm sphere-like shapes and led to an increase in the specific surface area from 95 to 170 m2/g, decrease in the average pore size from 11 to 4.8 nm, and decrease in the average crystallite size from 17 to 12 nm. These mesophases were used as photocatalysts for the UV degradation of methylene blue and methyl orange. The mesoporous anatase phases photodegraded MB 1.5–3× faster than commercially available P25 and showed limited photocatalytic behavior for methyl orange.  相似文献   

10.
Thermal shock resistances of ZnO and non-ZnO containing ZnS–SiO2 composite ceramics are observed using water quenching method. The residual strengths are measured as function of quenching temperature differences. The thermal shock damage parameters R and R are evaluated to compare with experimental results. Specimens with low thermal shock damage parameters show acute strength degradation up to 76% at a lower quenching temperature difference of 250 °C. The 1% ZnO containing specimen with medium density and higher thermal shock damage parameter values demonstrates a minimal strength drop of 36% at a higher quenching temperature difference of 300 °C. The evaluated R and R values correspond well with the residual strength at elevated temperature difference. It implies that the good thermal shock resistance of ZnS–SiO2 system can be achieved by improving fracture toughness with moderate ZnO addition and pores.  相似文献   

11.
We report the electropolymerization of 2-amino-1,3,4-thiadiazole (ATD) on glassy carbon (GC) and indium tin oxide (ITO) electrodes in 0.10 M H2SO4. The electropolymerized ATD (p-ATD) film was characterized by cyclic voltammetry, attenuated total reflectance (ATR)-FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The AFM image showed that the p-ATD formed a spherical-like structure with a thickness of 25 nm. XPS of the p-ATD film showed binding energies at 398.7, 400.3 and 401.3 eV in the N 1s region corresponding to –N, –NH– and –N+H–, respectively, and at 285.5 and 287.0 eV in the C 1s region corresponding to C–N and CN, respectively. The appearance of binding energies at 285.5 and 287.0 eV confirmed that the p-ATD film proceeded via C–N and CN linkages and not via C–C or CC linkages. The p-ATD film deposited on the GC electrode was successfully used for the determination of ascorbic acid (AA) at physiological pH. The amperometric current was increased linearly from 7.5 × 10−8 to 2.0 × 10−5, and the detection limit was found to be 0.28 nM (S/N = 3).  相似文献   

12.
New complex [Zn(quin-2-c)2(Him)2] (quin-2-c = quinoline-2-carboxylate ion, Him = imidazole) was synthesized by self assembly and its structure was determined by X-ray analysis. The compound crystallizes in P21/c space group. Four independent molecules of complex are present in the structure. Strong hydrogen bonds create three different 1D chains which are collected in two different layers. The alternately packed layers form the 3D supramolecular structure. The interchain and interlayer contacts are of the C–HO, ππ and C–Hπ type. The influence of strong hydrogen bond on the vibrational characteristics of the monodentately coordinated carboxylate group in zinc complexes with quin-2-c ion is discussed.  相似文献   

13.
We found that nitrogen incorporation can induce the formation of vertically-aligned hydrogenated carbon nanorods without the use of catalysts. These nitrogen incorporated hydrogenated carbon nanorods (CNx:H) were synthesized by radio-frequency plasma-enhanced chemical vapor deposition (PE-CVD). We have evaluated the structural and chemical evolution of these CNx:H films as a function of the deposition duration by using high-resolution scanning electron microscopy (HRSEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), and Auger electron spectroscopy. Results indicate that the incorporation of nitrogen is responsible to the formation of these nanorods. The alignment of the nanorods is enhanced at longer deposition period and is correlated to the increase in nitrogen contents and isonitrile bonds [–NC] in the nanorods. The growth mechanism of this catalyst-free formation of nitrogen incorporated carbon nanorods is proposed.  相似文献   

14.
Lamellar thicknesses and cross-hatching frequencies in α-isotactic polypropylene have been measured for two series of fractions using linear nucleation to provide large arrays of oriented lamellae in row structures for sampling. One series is of high tacticity polymers differing in molecular mass from 6 × 104 to 8 × 105, the other has low and high tacticity materials for 9 × 104 and 2 × 105 masses. These have allowed the differing influences of both molecular mass and tacticity to be evaluated. Lamellar thicknesses increase with molecular mass to 5 × 105 then level off. This is consistent with the fold surface increasing its free energy by 20% for longer molecules as its structure becomes progressively more complex. Except for the lowest fraction, the thickness of cross-hatching lamellae is less than that of its radial neighbours because of differential thickening. The frequency of cross-hatching is greatest for the least tactic fraction but decreases linearly with molecular length. This dependence suggests that chain ends play a key role in initiation probably by laying down the first segment in epitaxial orientation. This suggestion could also account for the reduced thermal stability of spherulite centres and regions of high cross-hatching density where there is competition for chain ends between thickening and cross-hatching. The curvature of lamellae at the very end of a row mirrors the dependence of lamellae thickness with molecular mass and allows cilia pressure, the factor strongly involved in causing the lamellar divergence underlying spherulitic growth, to be estimated as 100 Pa.  相似文献   

15.
Boron removal from boron containing wastewaters prepared synthetically via the electrocoagulation method was studied. The experiments in which aluminum plate electrode was used were carried out in a batch reactor. The solution pH, initial boron concentration, current density, type of supporting electrolyte, temperature of solution and stirring speed were selected as experimental parameters. The obtained experimental results showed that efficiency of boron removal increased with increasing current density and decreased with increasing boron concentration in the solution. Supporting electrolyte had not significant effects on the percent of total boron removal. pH was very important parameter effecting boron removal and optimum pH was determined to be 8.0. This pH value reached an agreement with activity-pH diagrams for Al+3 species in equilibrium with Al(OH)3 and boron species in aqueous media. As a result of increasing interaction between boron ions and dissolved aluminum ions in solution, the increasing solution temperature increased boron removal efficiency. Increasing stirring speed decreased boron removal efficiency where the increasing stirring speed decreased the capability of floc formation of aluminum ions. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions. In addition, the process kinetics was predicted by using heterogeneous fluid–solid reaction models. It was seen statistically that the kinetics of this process agreed with the pseudo-second-order model as follows: XB/(l−XB) = 18,241[OH][C]−3.45[CD]7.79[t]1.41[S]−3.65exp[−30,668/RT].  相似文献   

16.
In this paper, functional macromolecule poly(methacrylic acid) (PMAA) was grafted on the surface of silica gel particles using 3-methacryloxypropyl trimethoxysilane (MPS) as intermedia, and the grafted particle PMAA/SiO2 with strong adsorption ability for phenol was prepared. The adsorption mechanism and properties of PMAA/SiO2 for phenol were researched by static and dynamic methods. The experimental results showed that PMAA/SiO2 possesses strong adsorption ability for phenol with interaction of three kinds of hydrogen bonds including peculiar O–Hπ hydrogen bond (aromatic hydrogen bond) and O–HOC π hydrogen bond. The saturated adsorption amount could reach up to 162.88 mg g−1. The empirical Freundlich isotherm was found to describe well the equilibrium adsorption data. pH and temperature were found to have great influence on the adsorption amount. Finally, PMAA/SiO2 was observed to possess excellent reusability properties as well.  相似文献   

17.
The effect of sodium promoter on the catalytic hydrogenation of biphenol (BP) was investigated. Several reaction products were identified and the change in their distribution with time was analyzed to find the reaction mechanism. Different amount of sodium salt was impregnated on Pd/C to observe its effect on the composing reactions of BP hydrogenation. The existence of sodium metal decreased the CC bond hydrogenation, but accelerated the CO bond hydrogenation resulting in the increase of the yield to bicyclohexyl-4,4′-diol (BHD). The promotional effect of Na on the supported palladium on carbon catalysts were explained by electronic and geometric factors.  相似文献   

18.
This paper established a necessary condition for the sintering of powder compacts by examining the total free energy balance in terms of the particle size, neck size and contact number. The thermodynamic analysis of the proposed model clarifies the relation of shrinkage (q) of powder compact-contact angle ()-relative density at a given dihedral angle (e) of a grain boundary. Faster densification proceeds in the region with a larger coordination number (n) of particles at a small q value. A large shrinkage is needed to eliminate the large pores formed in the structure of small n value. Full density can be achieved in the range of 117° < e < c, where c is the critical dihedral angle allowing the shrinkage required for full densification. The derived concepts are effective to interpret the densification of hierarchical particle clusters. The relative density of ceria powder compact approached nonlinearly unity with decreasing ratio of pore size (r(P)) to grain size (r) and this tendency was well expressed by the present densification model. The influence of grain growth on the densification of powder compact and size of large pore isolated in a dense matrix are also quantitatively discussed.  相似文献   

19.
Dual-curable adhesives were prepared using various epoxy acrylate oligomers, a reactive diluent, photoinitiators, a thermal-curing agent and a filler. The UV- and thermal-curing behaviors of the dual-curable adhesives were investigated using photo-differential scanning calorimetry (photo-DSC), Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, and the determination of the gel fraction, pendulum hardness and adhesion strength.The reaction rate and extent of UV curing were found to be strongly dependent on the concentration of CC bonds in the epoxy acrylate oligomers. The FTIR-ATR absorption peak areas representing the relative concentration of CC bonds in the epoxy acrylate oligomers and trifunctional monomer decreased with increase in UV dose because of photopolymerization. When the dual-curable adhesives were irradiated with UV light, the gel fraction increased with increase in CC bond contents in the epoxy acrylate oligomers. Also, after thermal curing, the gel fraction was highly enhanced due to the cross-linking reaction of the unreacted glycidyl groups in epoxy acrylate oligomers induced by the thermal-curing agent. This cross-linked structure of the dual-curable adhesives affects the pendulum hardness and adhesion strength.  相似文献   

20.
In order to reveal the relationship between the dipole moment and electric properties of organically modified semiconductor, a series of ω-functionalized alkyl monolayers on oxide-free silicon (Si-(CH2)10COOH, Si-(CH2)11CH3, Si-(CH2)10COOC2H5, and Si-(CH2)11OH) was prepared and characterized. Electrochemical impedance measurements showed excellent insulating effects of these monolayers. It has been demonstrated that the dielectric constants of these organic monolayers are affected by the dipole moments introduced by the different terminal-groups. Solid-state electrical measurements showed that mercury | ω-functionalized alkyl monolayer | silicon junctions exhibit molecular tunability and a clear correlation between ideality factor and the film thickness/dielectric constant ratio. The barrier height is approximately proportional to the dipole moment of the monolayer. These results augment the possibility of fine-tuning the electrical properties of silicon-based microelectronic devices using functionalized organic monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号