首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
河北某低品位磁铁矿石全铁含量为14.60%,磁性铁为7.81%,为合理利用该资源,分别采用湿式预选—阶段磨矿—全磁选工艺流程和粗粒湿式预选—阶段磨矿—细筛—阶段弱磁选流程就矿石中磁铁矿的回收进行了选矿试验。试验分别获得了铁品位为66.19%、铁回收率为53.34%和铁品位为66.14%、铁回收率为53.40%的铁精矿,根据试验结果最终推荐湿式预选—阶段磨矿—细筛—阶段弱磁选流程为合理利用该极贫磁铁矿切实可行的选别流程。  相似文献   

2.
陈少学  黄新 《现代矿业》2013,29(4):83-85
山东某磁铁矿在工艺矿物学研究的基础上进行了3种选矿工艺的研究对比,采用原矿筛分分级-干式磁选- 湿式粗粒磁选-连续磨矿-弱磁选原则流程,〖JP3〗可获得铁品位为66.21%、回收率为69.10%铁精矿;采 用原矿筛分分级-干式磁选-湿式粗粒磁选-2段阶段〖JP〗磨矿-弱磁选流程,可获得铁品位为66.48%、 回收率为68.58%的铁精矿;采用原矿筛分分级-干式磁选-湿式粗粒磁选-3段阶段磨矿-弱磁选流程,可 获得铁品位为66.61%、回收率为68.47%的铁精矿。试验结果表明:与原则流程相比,3段阶段磨矿可有效提 高铁精矿质量降低磨矿量,有效节省磨矿费用。  相似文献   

3.
四川某铁矿石主要有用矿物为磁铁矿。随着矿石向深部开采,现有工艺流程已不适于其深部矿石,在对深部矿石进行选矿工艺实验研究时,引入细筛工艺,大大降低了第二段磨矿的细度,降低其能耗。研究结果表明,采用干式磁选预选-二段磨矿二段磁选-磁选精矿细筛的选矿工艺流程,可获得全铁品位60.24%、全铁回收率88.67%的铁精矿。  相似文献   

4.
高春庆 《金属矿山》2016,45(12):94-99
某铁矿石主要有用铁矿物为磁铁矿但嵌布粒度微细,选别比较困难。为了给该类矿石的经济高效开发利用提供技术依据,进行了原矿筛分分级-干式磁选-粗粒湿式磁选-三段阶段磨矿-弱磁选和原矿筛分分级-干式磁选-粗粒湿式磁选-两段阶段磨矿-磁选-细筛分选-筛下磁选柱精选-中矿再磨-磁选两个工艺流程试验。对比试验结果表明,采用原矿筛分分级-干式磁选-粗粒湿式磁选-两段阶段磨矿-磁选-细筛分选-筛下磁选柱精选-中矿再磨-磁选工艺流程在最终磨矿粒度为-0.043 mm 80%时,可以获得精矿产率为20.20%,铁品位为65.48%,其中磁性铁品位为64.78%,铁回收率为58.15%,磁性铁回收率为94.72%的选别指标。  相似文献   

5.
河北某低品位磁铁矿铁品位15.62%,铁主要赋存于磁铁矿中,但占比不高,主要有用矿物磁铁矿嵌布粒度粗细不均,主要为细粒嵌布。为回收利用其中的铁,进行选矿试验。结果表明,原矿破碎至-8 mm经干式预选抛废,可提前抛除产率69.72%合格尾矿,预选精矿TFe品位30.28%,磁性铁回收率87.12%;预选精矿经一段磨矿—1次弱磁选—二段磨矿—2次弱磁选流程选别,可获得TFe品位66.34%、回收率44.48%的铁精矿,可为合理利用该铁矿石资源提供技术依据。  相似文献   

6.
某贫磁铁矿选矿工艺研究   总被引:1,自引:0,他引:1  
刘军  景巍 《现代矿业》2010,26(5):92-94
对某贫磁铁矿进行了阶段磨矿-弱磁选、阶段磨矿-细筛再磨-弱磁选和阶段磨矿-弱磁选-反浮选流程试验,结合现有矿山生产实践,为保证生产稳定,易于操作,且经济高效,确定采用阶段磨矿-弱磁选流程为宜,其选别指标为:精矿产率39.78%,铁品位66.59%,铁回收率86.60%。  相似文献   

7.
刘丽梅  张永 《金属矿山》2011,40(10):91-95
为了给大规模合理开发本钢集团贾家堡子铁矿8号矿体矿石资源提供技术依据,针对该矿石磁铁矿嵌布粒度微细的特点,采用大块干式磁选抛废-单一弱磁选和大块干式磁选抛废-弱磁选-反浮选两种工艺流程进行了选矿试验。结果表明:前者在-0.030 8 mm占90%的最终磨矿细度下,可获得铁品位为65.76%、回收率为75.93%的铁精矿;后者在-0.043 mm占90%的最终磨矿细度下,可获得铁品位为65.47%、回收率为74.43%的铁精矿。两流程技术指标相近,采用哪种流程取决于技术经济比较。  相似文献   

8.
河北某磁铁矿石铁品位为38.54%,主要有用矿物为磁铁矿,为开发利用该矿石,对其进行了选矿试验研究。结果表明:原矿经干式磁选抛尾—湿式粗粒磁选抛尾—磨矿—1粗1精弱磁选流程选别,可获铁品位65.67%、铁回收率83.95%、磁性铁回收率96.09%的铁精矿,为开发利用该矿石提供了技术依据。  相似文献   

9.
对云南某原矿TFe品位22.35%、磁性铁含量15.58%的贫磁铁矿进行了选矿试验研究。经过不同粒度预选试验和多流程对比试验,开发出了适合该矿的选矿工艺流程,采用粗粒预选-磨矿-弱磁选-重选-再磨-弱磁选流程,取得了精矿产率23.89%、TFe品位65.70%、回收率70.28%的指标。  相似文献   

10.
河南某磁铁矿石全铁含量为25.87%,磁性铁为18.84%,采用分级—干式和湿式弱磁选组合抛废—预选精矿阶段磨矿阶段磁选流程进行试验,获得了铁品位为69.17%、回收率为72.59%的精矿,为合理利用该磁铁矿找到了切实可行的方法并提供了技术依托。  相似文献   

11.
为给山西某铁矿大规模开发利用矿区内的低铁含硫矿石提供技术方案,在完成矿石性质分析的基础上进行了选矿工艺研究。结果表明:①矿石中的铁以磁性铁和硅酸铁为主,分别占总铁的54.46%和36.52%,赤褐铁仅占总铁的2.81%,因此,该矿石宜采用弱磁选工艺回收,但铁回收率不高;②采用大块(-75 mm)中磁干抛-粉矿(-12 mm)弱磁干式预选-一段磨矿(-200目55%)-弱磁粗选-粗精矿二段磨矿(-200目95%)-2次弱磁精选-1粗1精脱硫反浮选流程处理铁品位为20.54%、硫含量为0.763%的铁矿石,获得了铁品位为69.65%、铁回收率为48.63%、硫含量为0.09%的铁精矿,硫品位为24.93%、硫回收率为27.77%的含硫杂质可作为硫精矿出售。  相似文献   

12.
甘肃某微细粒嵌布的贫磁铁矿石因最终磨矿产品粒度极细,常规弱磁选指标较差。为改善选别效果、提高分选指标,对弱磁精选前的分散—选择性絮凝条件进行了研究,并借助激光粒度分析仪对分散—絮凝效果进行了测定。结果表明:矿石在磨矿1细度为-74μm占90.43%、磨矿2细度为-30μm占93.45%、弱磁精选1分散剂六偏磷酸钠用量为500 g/t,絮凝剂CMS用量为750 g/t,矿浆p H=11情况下,采用磨矿1—弱磁粗选—磨矿2—2次弱磁精选流程处理,最终获得铁品位为62.82%、铁回收率为79.12%的铁精矿,该精矿比常规弱磁精矿铁品位和铁回收率分别提高了1.28和5.08个百分点。分散—絮凝机理分析表明:在分散状态下,磁铁矿表面电荷负值较石英小,阴离子型絮凝剂CMS可通过氢键作用选择性吸附磁铁矿颗粒,显著增大磁铁矿微细颗粒的粒径,从而改善磁选效果、提高选矿指标。  相似文献   

13.
李韦韦 《现代矿业》2020,36(7):111-115
加拿大某钒钛磁铁矿石Fe品位为4256%,TiO2品位为1065%,V2O5品位为033%,Cr2O3品位为122%,矿石中的金属矿物主要为钛磁铁矿和钛铁矿,绝大部分有用元素赋存在钛磁铁矿中。为确定该矿石的开发利用工艺,进行了选矿试验。结果表明:采用两阶段磨矿阶段弱磁选工艺,可获得Fe、TiO2、V2O5、Cr2O3品位分别为5276%、1021%、042%、164%,回收率分别为8714%、6738%、8945%、9391%的铁精矿;弱磁选铁尾矿采用强磁选+重选选钛流程,可获得TiO2品位为4703%的钛精矿,相对弱磁选铁尾矿的回收率为734%。  相似文献   

14.
为了更好地指导甘肃某铁矿石的选矿试验,对该矿石进行了工艺矿物学研究。结果表明:①铁品位为37.89%的铁矿石为半自熔性、低硫磷磁铁矿石,有回收价值的铁矿物为磁铁矿,磁性铁占总铁的79.31%。②矿石的主要构造类型为块状构造,其次为浸染状构造和条带状构造;矿石的主要结构类型为他形-半自形粒状结构、包含结构。③以较粗粒嵌布(0.045~0.2 mm)的磁铁矿约占65%,这些磁铁矿颗粒大多被角闪石和石英颗粒分割;粒度为0.025~0.045 mm的细粒嵌布的磁铁矿约占20%,大多呈稀疏和稠密浸染状分布在脉石矿物中;微细粒中,嵌布粒度为0.01~0.025 mm和-0.01 mm的磁铁矿分别约占10%和5%。因此,该矿石中的磁铁矿宜采用干式预选抛废-阶段磨矿阶段弱磁选工艺回收,并应在坚持能收早收、减少磁铁矿过磨的基础上,加强-0.025 mm微细粒磁铁矿的回收,以确保磁铁矿的回收率。  相似文献   

15.
秉新矿业铁矿石铁品位为18.50%,磁性铁品位为15.69%,矿石中铁矿物主要为磁铁矿,为粗细不等的粒状分布,磁铁矿集合体常包裹细粒脉石矿物。为了确定该矿石的高效开发利用工艺,进行了选矿试验研究。结果表明,矿石经高压辊磨机闭路破碎至-3 mm后再经粉矿干选机预选(磁场强度318.47 kA/m、转速80 r/min)抛尾,预选精矿在磨矿细度为-0.074 mm占85%的情况下经1粗1精弱磁选(磁场强度分别为191.08 kA/m和143.31 kA/m),获得了TFe品位为66.62%、回收率为80.98%的精矿。该工艺简洁、高效,适用于该矿石的开发利用。  相似文献   

16.
刘兴华  陈雯 《金属矿山》2014,43(5):64-69
为给新疆某低品位细粒磁铁矿的开发利用提供合理的选矿工艺,针对矿石性质的特点,进行了阶段磨矿、阶段弱磁选工艺和阶段磨矿、阶段弱磁选、阳离子反浮选工艺试验。结果表明:①采用3段磨矿、4次弱磁选的阶段磨选工艺流程处理该矿石,在三段磨矿细度为-0.038 mm占95.18%的情况下,可获得铁品位为66.48%、铁回收率为78.79%的铁精矿;采用2阶段磨矿弱磁选、弱磁精矿2阳离子反浮选、反浮选尾矿再磨-弱磁选抛尾后再返回反浮选的流程处理该矿石,在反浮选尾矿再磨细度为-0.038 mm 占96.34%的情况下,可获得铁品位为69.76%、铁回收率为78.51%的铁精矿。②单一弱磁选流程虽然简洁,但弱磁选、阳离子反浮选联合流程在最后一段磨矿量(相对原矿)显著下降22.99个百分点的情况下,最终精矿铁品位却大幅提高3.28个百分点。  相似文献   

17.
某含铜高硫磁铁矿石选矿试验   总被引:1,自引:0,他引:1  
唐雪峰 《金属矿山》2011,40(4):162-165
针对某磁铁矿石中含铜且磁黄铁矿含量高的特点,采用弱磁选-弱磁选精矿反浮选脱硫-弱磁选尾矿浮铜工艺进行选矿试验,获得了铁品位为66.85%,铁回收率为67.82%,硫含量仅0.20%的铁精矿和铜品位为23.40%,铜回收率为64.06%的铜精矿以及硫品位为23.05%的附加产品硫精矿,实现了铁、铜、硫的综合回收。草酸对磁黄铁矿的选择性活化作用和新型捕收剂CYS对磁黄铁矿的强捕收能力是磁铁矿与磁黄铁矿得以高效分离的关键。  相似文献   

18.
为解决酒钢镜铁山镜铁矿竖炉焙烧熟料采用磁滑轮预选-欠烧矿二次焙烧后抛废-磨矿-弱磁选工艺处理所存在的磨矿效率、精矿铁品位和铁回收率均较低等问题,进行了选矿试验研究。结果表明,原料破碎至0~5 mm后经粉矿干选,干选精矿磨矿-弱磁选,干选中矿二次焙烧-磨矿-弱磁选,最终可获得铁品位为58.31%,回收率为84.39%的铁精矿,粉矿干式抛尾产率为7.56%、铁品位为7.75%,需进行二次焙烧的中矿产率为18.03%。与现场生产指标相比,新工艺精矿铁品位高3个百分点左右,铁回收率高2个百分点左右。因此,新工艺是处理现场焙烧矿的合适工艺,具有节能减排、降本提质的效果。  相似文献   

19.
鞍钢东部尾矿样铁品位为10.64%,FeO含量为2.71%,铁主要以赤(褐)铁矿形式存在,磁铁矿少量,且这些铁矿物嵌布粒度较细,单体解离度较低,常规选矿工艺难以获得高品质的铁精矿。为解决该二次资源的开发利用问题,对有代表性试样进行了选矿试验研究。结果表明,采用筒式弱磁选—立环高梯度强磁选的初级预富集工艺处理,抛尾产率达49.48%,获得铁品位为16.24%、铁回收率为78.54%的初级预富集精矿;初级预富集精矿在磨矿细度为-0.043 mm占90%的情况下,采用筒式弱磁选—立环高梯度强磁选工艺处理,可获得铁品位为32.08%、铁回收率为62.68%的预富集精矿;采用弱磁选1—立环高梯度强磁选1初级预富集—初级预富集精矿细磨—弱磁选2—立环高梯度强磁选2再富集的阶段磨选流程处理试样,可获得铁品位32.08%、铁回收率62.68%的磁选预富集精矿,抛尾产率达79.21%,这有效降低了后续焙烧—磁选系统处理量,从而大幅度降低了后续生产成本,为二次铁矿石资源的高效利用提供了技术支持。  相似文献   

20.
齐大山铁矿矿石铁品位为31.56%,其中FeO含量为6.59%,主要铁矿物为赤铁矿和磁铁矿,原采用阶段磨矿-粗细分级-重选-磁选-阴离子反浮选工艺,对微细粒铁矿物回收效果差。为改善细粒铁矿物的回收效果,提高选厂经济效益,对齐大山铁矿石开展了选矿工艺优化研究。结果表明:当一段磨矿细度为-0.074 mm占65%,二段磨矿细度为-0.074 mm占90%时,采用阶段磨矿-粗细分级-阶段重选-磁选-阴离子反浮选流程处理矿石,可以获得铁品位和回收率分别为66.80%和82.90%的综合精矿,其中重选精矿占比高达70.21%,弱磁选精矿占比为7.57%。一段螺旋溜槽粗选尾矿直接给入磁选-反浮选,能有效避免微细粒级铁矿物的损失;降低旋流器分级作业沉砂粒度,增加重选作业处理量;增加弱磁精选作业,直接产出最终精矿等措施,对降低浮选作业药剂用量和最终选矿成本具有重要意义。试验成果对实现鞍山式铁矿石的高效分选具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号