首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 133 毫秒
1.
木材干燥是一个复杂的非线性系统,由于木材结构复杂且具有多样性和变异性,很难建立一个理想的符合木材干燥过程的数学模型。利用遗传算法的全局寻优能力优化BP神经网络连接权值系数,分别用BP和GA—BP两种算法建立了木材干燥基准模型。对比结果表明:GA—BP算法建立木材干燥基准模型提高了期望误差精度和收敛速度,避免了BP算法陷入局部极小值.预测平均误差为1.0413%,具有较好的预测精度。  相似文献   

2.
木材干燥是一个复杂的非线性系统,由于木材结构复杂且具有多样性和变异性,很难建立一个理想的符合木材干燥过程的数学模型。利用遗传算法的全局寻优能力优化BP神经网络连接权值系数,分别用BP和GA-BP两种算法建立了木材干燥基准模型。对比结果表明:GA-BP算法建立木材干燥基准模型提高了期望误差精度和收敛速度,避免了BP算法陷入局部极小值,预测平均误差为1.0413%,具有较好的预测精度。  相似文献   

3.
赵江  张贵炜  齐欢 《信息与控制》2005,34(2):172-176
提出了利用多模型融合技术进行发酵过程建模的新方法, 该方法能够将在线参数和离线参数同时用于建模中. 首先给出了多模型融合建模算法框架, 并描述了基于自适应模糊神经网络和模糊推理技术两个参与融合的子模型的建立方法. 采用三个非线性函数分别运用GMDH-PTSV算法、傅里叶神经网络和多模型融合建模算法进行建模精度比较. 最后给出了多模型融合建模算法在青霉素发酵过程中应用的结果.  相似文献   

4.
基于LSSVM的木材干燥建模研究   总被引:4,自引:0,他引:4  
针对木材干燥过程的强非线性特点,提出以最小二乘支持向量机LSSVM建立木材干燥基准模型.通过实验用小型木材干燥窑实际干燥过程中采集的数据作为训练样本进行仿真实验,结果表明基于LSSVM的木材干燥模型预测输出能够准确反映干燥过程木材含水率的变化,模型结构简单、预测精度高、泛化能力强,验证了LSSVM对木材干燥过程建模是一种可行而有效的方法.  相似文献   

5.
针对木材干燥系统具有非线性、强耦合的特性,难以建立准确的数学模型,提出一种基于小波神经网络的建模方法。通过木材干燥窑内木材含水率传感器、温度传感器和湿度传感器采集的数据建立小波神经网络模型,并通过模型预测木材含水率传感器的测量值。小波神经网络将BP神经网络在非线性问题上自学习的能力与小波表征信号局部信息的能力相结合,具有很强的自适应分辨性和容错能力。利用实际木材干燥过程中采集的数据作为训练样本进行仿真实验。结果表明:小波神经网络方法建立的模型能够预测木材含水率传感器的测量值,模型泛化能力强,预测精度高于BP神经网络建立的模型,验证了小波神经网络对木材干燥窑内传感器建模的可行性和有效性。  相似文献   

6.
本文提出了一种基于RBF神经网络和证据理论的两级数据融合方法。利用RBF神经网络实现特征层数据融合,建立基本信任分配函数,具有最佳一致逼近特性,同时解决了D-S证据理论确定基本信任分配函数困难的问题。基于D-S证据理论的传感器故障诊断方法的研究,可有效地判断工业现场传感器的工作状态。实验结果表明该方法可正确定位并准确分离出木材含水率检测系统中失效传感器。  相似文献   

7.
朱晓芸  杨建刚 《机器人》1997,19(3):166-172
本文提出了一种用于自主式移动机器人的障碍物类型识别的数据融合新方法,有两种不同的神经网络-小脑模型联接控制器和多层前向网分别来自CCD摄象机的二维图象和来自超声测距系统的距离信息进行数据融合。  相似文献   

8.
小波神经网络(WNN)是将小波理论和神经网络理论结合起来的一种神经网络,有较强的函数学习能力和推广能力及广阔的应用前景。采用基于WNN的BP权值平衡算法对多传感器测量的结果进行特征级的数据融合,融合结果提供给决策级判断。该融合算法避免了BP网络收敛速度慢,易产生局部最优解等缺点,提高了学习的速度、精度。仿真结果表明了该方法的有效性。  相似文献   

9.
木材干燥控制系统的实现   总被引:1,自引:0,他引:1  
本文从硬件、软件两个方面介绍木材干燥控制系统在工控机上的实现。应用该系统大大提高了工作效率节约了能源,创造明显的经济效益。  相似文献   

10.
为了改善多个同类传感器检测目标参数的性能,提出了一种基于递推最小二乘法的多传感器数据融合的正交基神经网络算法,用基于递推最小二乘法的神经网络算法对各传感器的量测数据进行处理,并用神经网络输出结果的平均值来实现多传感器的数据融合.为了验证算法的有效性,给出了多传感器数据融合的仿真实例.研究结果表明,基于递推最小二乘法的多传感器数据融合的正交基神经网络算法是有效的.  相似文献   

11.
基于参数估计的数据融合算法研究   总被引:3,自引:0,他引:3  
研究了有关分批估计、自适应加权和方差估计算法在多传感器数据融合中的有效性、准确度和实时性。通过实例在对几种算法进行仿真比较的基础上,说明了上述几种算法的有效性及其融合精度的差异,其结果表明:按测量方差值并采用自适应加权算法的融合效果最佳,有效地提高了融合精度,对考虑了环境噪声的多传感器数据采集系统较为适合。  相似文献   

12.
基于人工神经网络的压力传感器三维数据融合   总被引:2,自引:0,他引:2  
针对压力传感器对温度变化和电流波动的交叉灵敏度问题,采用径向基函数(RBF)人工神经网络法对其进行数据融合处理,详细讨论了网络的训练过程和数据融合过程,消除温度和电流对压力传感器的影响。仿真结果表明:当温度变化48.5℃,电流波动3%时,经RBF神经网络数据融合后,压力波动为0.544%,大大降低了交叉干扰,提高传感器的稳定性及其精度,满足在线融合的需要。  相似文献   

13.
为了提高对木材纹理识别的精度,提出了一种基于融合灰度共生矩阵与高斯-马尔可夫随机场纹理参数的特征级数据融合木材纹理模式识别方法。首先,分别获取了以上两种木材纹理特征参数;然后,使用模拟退火算法将两种不同类型的纹理特征量在特征层上进行了融合。利用融合后的特征对木材纹理样本进行识别,BP神经网络分类器的识别率达到97.00%,表明数据融合后的特征参数对木材纹理识别是十分有效的。  相似文献   

14.
通常传感器的输出值不仅决定于目标参量,还会受到非目标参量的影响。为此,采用BP神经网络技术对其进行数据融合处理,以消除非目标参量对传感器输出值的影响。试验结果表明:该方法很好地抑制了传感器的交叉灵敏度,提高了其测量准确度。  相似文献   

15.
基于BP神经网络的多传感器数据融合技术优化   总被引:1,自引:0,他引:1  
传统的数据融合算法要求获得比较精确的对象数学模型,对于复杂的难于建立模型的场合无法适用。为解决上述问题,提出了一种基于BP神经网络算法的多传感器数据融合方法,对对象的先验要求不高,具有较强的自适应能力。仿真结果表明,采用BP神经网络对传感器数据进行融合处理大大提高了传感器的稳定性及其精度,效果良好。  相似文献   

16.
针对禽畜养殖场环境废气体积分数数据的处理,使用多个传感器测量环境温度、湿度、某种废气的体积分数。对于传感器故障而失真的数据,使用基于RBF神经网络的数据融合方法融合对某一废气测量值的多种影响因素,估算出该废气的体积分数,从而实现失真数据的恢复。以NH3体积分数数据的处理为例,Matlab仿真结果估算误差小于6.7%,证明了基于RBF网络的数据融合方法的有效性。  相似文献   

17.
如何有效地使用传感器节点的能量以延长WSN的生存时间,一直是WSN路由协议研究的重点.基于LEACH,提出了一种新的路由协议AF-LEACH,AF-LEACH根据数据融合的能量开销和所带来的节能增益,对传感器节点采集的数据进行自适应的数据融合.仿真实验表明,与LEACH协议以及在各节点都进行数据融合的MA-LEACH[...  相似文献   

18.
针对体域网的多传感器数据采集过程中存在的数据冗余大、特征信息模糊问题,提出了一种基于深度神经决策森林(DNDF)的数据融合方法。首先根据目标任务的实际需求,使用卷积神经网络进行相关特征提取,再将决策树放置到全连接层之后进行精细化数据分类。通过使用DNDF方法,不仅能够有效提取多维数据的关键特征,而且能够较好地兼顾数据间的关联性。实验以AReM数据集作为实验样本,结果表明,DNDF方法相对其他传统算法具有更好的分类准确率,分类准确率达到了96.5%。  相似文献   

19.
模糊神经网络语音数据融合算法的研究   总被引:1,自引:1,他引:1       下载免费PDF全文
针对高嗓音环境中的语音识别问题,提出一种利用模糊神经网络进行语音数据融合的新算法。该算法按一定模糊规则对语音信号的特征参数进行模糊化,并通过神经网络对每个传感器语音信号的模糊特征参数进行分类和融合。仿真实验表明,该算法鲁棒性更强;与单传感器算法相比,语音识别率得到较大的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号