首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杜月 《通讯世界》2017,(15):272-273
近年来,微通道板光电倍增管(MCP-PMT)是指以微通道板为电子倍增系统的光电倍增管,与传统的静电聚焦打拿极相比,在结构上使得电子从光电阴极到阳极的距离大大减小,加上微通道板的电子倍增特性等优点,使该种光电倍增管在较多领域得到了广泛应用,研究其性能,对于设计、制造高性能的微通道板光电倍增管具有指导意义.基于这种情况,本文简要介绍了光电倍增管的国内外研究现状,并对两者进行了对比分析,对基于微通道板光电倍增管的结构及工作原理进行了叙述,然后对光电倍增管的响应性能、抗电磁场性能、增益性能和暗电流性能进行了研究,从而为关注这一话题的研究人员提供理论依据.  相似文献   

2.
光子计数用光电倍增管的外围工作电路   总被引:2,自引:1,他引:1  
光电倍增管是光子计数系统经常采用的一种典型探测器,是整+~-t-计数系统的基础。光子计数系统中光电倍增管的外围工作电路设计得是否舍理,对光子计数系统的性能有很大影响。文中介绍了光电倍增管常采用的一些工作电路,分析了这些工作电路的特点,并给出了适合光子计数用光电倍增管的外围工作电路。  相似文献   

3.
光电倍增管聚焦系统收集效率是影响光电倍增管性能的关键因素。本文提出了一种双电位聚焦技术,通过二次聚焦,将光电阴极产生的电子束进一步聚焦,通过COMSOL Multiphysics仿真软件对电位差、聚焦极直径、高度等参数进行了仿真优化,使得收集效率可达92.1%以上。通过装管验证,光电倍增管增益提高了14.76%。  相似文献   

4.
针对高能物理、核物理等国家大科学装置对核心探测器件的需求,研究不同于金属打拿极型倍增系统的大尺寸微通道板型光电倍增管。该光电倍增管最主要的特点是具有20 in(1 in=2.54 cm)的低本底玻壳和微通道板型倍增极结构,使用Sb-K-Cs阴极作为光电转换阴极,该阴极对350~450 nm波段光子的量子效率高,倍增极采用两片微通道板,在电压比较低的情况下可实现107的倍增能力,从而提高了光电倍增管的探测效率和单光子探测能力。与传统的金属打拿极型光电倍增管相比,20 in微通道板型光电倍增管是一种全新的产品结构,具有单光子峰谷比高、本底低、响应时间快、后脉冲比例小等特点。  相似文献   

5.
光电倍增管展望   总被引:5,自引:0,他引:5  
介绍了用于各领域的光电倍增管的技术特点和发展概况,评述了光电倍增管研制中所取得的新进展。并讨论了光电倍增管的发展方向和需要解决的关键技术问题。  相似文献   

6.
光电倍增管原理、特性与应用   总被引:12,自引:0,他引:12  
光电倍增管是一种能将微弱的光信号转换成呆测电信号的光民转换器件。文中以北京滨松光子技术有限公司生产的R/CR系列产品为代表,介绍光电倍增管的一般原理、使用特性及其应用。并特别给出了在各咱应用领域所适用的光电倍增管的型号。  相似文献   

7.
提高PMT光子计数系统探测灵敏度的方法   总被引:2,自引:1,他引:1  
光电倍增管(PMT)光子计数是光子计数技术的一种,通过选择合适的低噪声光电倍增管,并对光电倍增管的光阴极和前几级倍增极进行致冷。以及合理地设计光电倍增管的高压偏置电路和设定后续甄别器的鉴别闽值,可以使PMT光子计数系统对弱光的探测灵敏度达到甚至优于10^-17W。文中阐述了PMT光子计数的原理及系统组成.并对提高系统探测灵敏度的技术环节进行了分析。  相似文献   

8.
本文主要从光电倍增管的结构、性能及应用出发,简述当前光电倍增管的技术水平、技术动向及其新进展。  相似文献   

9.
司曙光 《光电技术》2006,47(2):34-38
近年来随着世界各国高能物理技术的发展。对探测用光电倍增管的脉冲线性电流性能要求越来越高。国外已有一种能够输出1.5A以上脉冲线性电流的光电倍增管。目前国内普通的光电倍增管只能够输出100mA的脉冲线性电流。本文结合作者多年来研制该种光电倍增管的经验,力求从理论上介绍该种光电倍增管的工作原理和研制技术途径。  相似文献   

10.
机载激光测深光电倍增管变增益探测方法   总被引:3,自引:0,他引:3       下载免费PDF全文
朱晓  杨克成  李再光 《激光技术》1999,23(4):209-212
对机载激光探测海水深度的大动态范围信号,提出了使用光电倍增管变增益探测方法来压缩其动态范围。给出了GDB333,GDB49,R1333光电倍增管增益控制特性,压缩信号动态范围达2.5×104倍,满足了机载激光测深系统的要求。使用光电倍增管变增益探测方法探测到的海底回波,也在文中进行了报道。  相似文献   

11.
大电流、高增益门控光电倍增管的研究   总被引:2,自引:0,他引:2  
朱镜屏 《光电子技术》2001,21(4):272-280
介绍了一个目前国内外公开文献报导中输出电流最大、电流增益最高且具有门控选通功能的微通道板光电倍增管,该管采用了大直径输入窗、多碱光电阴极、三块微通道作倍增极的近贴聚焦结构。  相似文献   

12.
可作光子计数的雪崩光电二极管   总被引:1,自引:0,他引:1  
对于光电倍增管不适用的高灵敏度弱光探测应用,存在一种固体替代器件,即雪崩光电二极管。这种器件在半导体内产生光电倍增,而光电倍增管在真空中产生电子倍增。雪崩光电二极管具有与半导体技术有关的微型化优点。由于这种器件能对单光子计数和探测很短时间间隔,它们已在光雷达、测距仪探测器和超灵敏光谱学方面找到日益增长的应用。另外,雪崩光电二极管在光纤通讯方面正与PIN光电二极管相竞争。雪崩光电二极管如何工作与任何光电二极管,样,雪崩光电二极管中由两类半导体组成的p-n结只允许电流在一个方向流动。光电二极管由一个掺有…  相似文献   

13.
光电倍增管的技术发展状态   总被引:2,自引:0,他引:2  
赵文锦 《光电子技术》2011,31(3):145-148
简述了光电倍增管的结构和用途,着重介绍了新型微通道板光电倍增管的结构特点和性能优势,同时对当今光电倍增管的最新发展状况进行了陈述和分析.  相似文献   

14.
介绍了两类耐振动抗冲击光电倍增管,最优越的耐振动抗冲击光电倍增管是由金属-陶瓷或金属-玻璃器件组成,另一个是使用两块陶瓷板固定所有金属电极来实现耐振动抗冲击的目的.  相似文献   

15.
设计了一种基于光电倍增管的弱光检测电路。该电路由光电倍增管分压器回路和检测光电倍增管阳极电流输出的微弱电流检测电路组成。  相似文献   

16.
如何选用雪崩光电二极管光学测量在各种科学、医学和工业应用中起着重要作用。简单光学系统用廉价光电池进行光探测,但许多应用要求有较高灵敏度和精度。传统方法是用光电倍增管获得高灵敏度。然而,光子水平灵敏的光电倍增管价格高昂,而且易碎、对磁场灵敏、与尺寸大小...  相似文献   

17.
混合式探测器(Hybrid Photodetector,HPD)作为一种新型的光电探测器件,是真空与半导体类结合型探测器件。HPD包括沉积在输入光窗表面的光电探测阴极、固态半导体阳极芯片和保持系统真空度的固态阳极。工作时,光信号通过沉积在输入光窗表面的光电阴极转化为光电子,经过高能电场加速后获得高能量轰击阳极半导体芯片表面,产生大量的电子空穴对,电子空穴对在半导体内部进行迁移,并通过自身的雪崩效应实现倍增,最终以电流信号输出。该探测器摒弃了传统的光电倍增管的微通道板(Micro Channel Plate,MCP)等倍增器件,克服了倍增单元信号易饱和的缺陷,增大了探测器的动态范围。HPD探测器综合了光电倍增管的高灵敏度和半导体芯片优异的空间和能量分辨率,具有探测面积大、探测灵敏度高、倍增效应强、动态范围宽等优点。在高能物理、医学成像和天体物理中有着重要的应用。此外,该探测器具有多种结构,分为近贴聚焦结构、交叉聚焦结构和漏斗聚焦结构,能够满足不同使用范围的探测需求;随着半导体阳极技术的发展,HPD阳极从单一芯片逐渐过渡到阵列式阳极结构,满足了大面积探测的需求。同时数字式读出和倍增信号技术的封装技术的发展,提高了HPD探测器的信号倍增和读出速度,改善了器件的集成化程度,有利于探测信号读出速率和信噪比的提升。近年来,其单光子计数和高动态响应等能力逐步被重视,将会在未来的光电探测领域发挥更为重要的作用。  相似文献   

18.
光电倍增管,在单光子探测应用中,有独特优势,其有效面积大,暗电流低,且倍增系数大。基于三代负电子亲和势阴极技术研究了InGaAs光电倍增管,利用GaAs衬底外延InGaAs,将三代光电阴极截止波长从920nm拓展至1100nm,阴极积分灵敏度340uA/lm,光谱峰值830nm,1000nm辐射灵敏度6.2mA/W,InGaAs性能达到日本滨松公司V8071U-76产品水平。在内置2块微通道板后,整管电子倍增系数大于105。  相似文献   

19.
银镁合金常被用作光电倍增管内的倍增极材料。先后由A、B两批AgMg3制造出的光电倍增管阳极灵敏度参数差别显著,于是给予分析比较,终于找出了这两批材料中的主要差异。  相似文献   

20.
各种仪器应用使用的探测器:光电倍增管与光电二极管   总被引:1,自引:0,他引:1  
Kaufm.  K 李玲 《红外》1995,(2):15-20
光电倍增管与光电二极管是医学,分析化学,过程控制,以及工业环境中所使用的许多仪器的核心。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号