首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对无源RFID低功耗的应用需求,基于SMIC 0.18μm CMOS工艺设计了一种低功耗CMOS温度传感器。该传感器首先基于双晶体管电路将温度信号转换为与之成正比的电压信号,并进一步转换为电流信号,然后通过振荡器电路转换为频率信号,最终经计数器后转换为与温度对应的二进制数字信号输出。仿真结果表明,在-20~100℃范围内传感器具有良好的线性度和温度精度,且传感器总功耗仅为1.05μW,可满足无源RFID领域应用需求。  相似文献   

2.
设计了一种适用于无源超高频(UHF)温度标签的超低功耗CMOS温度传感器电路.该电路利用衬底pnp晶体管产生随温度变化的电压信号,同时采用了逐次逼近寄存器(SAR)转换和∑-△调制相结合的模拟数字转换方式.为了降低电源电压波动以及采样电容电荷泄漏对传感器测温精度的不利影响,提出了一种具有漏电保护机制的采样电路.基于0.18 μm CMOS工艺设计实现了该传感器的电路和版图,其中版图面积为550 μm×450 μm,并利用Cadence Spectre仿真工具对电路进行了仿真.仿真结果表明,在-40~ 125℃,传感器的系统误差为-1.4~2.0℃,测温分辨率达到0.02℃;在1.2~2.6 V电源电压内,传感器输出温度波动小于0.3℃;在1.2V电源电压下传感器电路(不合控制逻辑及数字滤波器)的功耗仅为2.4μW.  相似文献   

3.
<正> 单线数字温度传感器DS1820 一般的温度传感器输出与温度成比例的电压信号或电流信号,它们都是模拟信号。因此用于微处理器进行温度测量或控制时,需要将温度传感器输出的模拟信号经A/D变换器转变成数字信号。 DS1820单线数字温度传感器可以直接感受温度并输出数字信号,与微处理器直接接口,这样系统简化,提高可靠性。 DS1820单线数字温度传感器的测量温度为-55℃~+125℃,增量为0.5℃,相应输出9位数字信号,如下表所  相似文献   

4.
——本文提出了一种基于亚阈值MOSFET的CMOS电压基准电路,它采用了与温度相关的阈值电压、峰值电流镜和亚阈值技术。此基准结构只由MOS晶体管和电阻组成,已经在SMIC 0.13μm CMOS工艺线上通过了流片验证。实验结果表明,基准电压输出在电源电压从0.5V变化到1.2V时具有2mV的变化,温度从-20℃变化到120℃时具有0.8mV的变化。该电路在室温时输出140mV,并且消耗电源电流仅为0.8uA,芯片面积占有0.019mm2。  相似文献   

5.
<正> 集成温度传感器实质上是一种半导体集成电路,它是利用晶体管的 b-e 结压降的不饱和值 VBE 与热力学温度 T 和通过发射极电流 I 的关系实现对温度的检测。集成温度传感器具有线性好、精度适中、灵敏度高、体积小、使用方便等优点,得到广泛应用。集成温度传感器的输出形式分为电压输出和电流输出两种。电压输出型的灵敏度一般为10mV/K,温度0℃时输出为0,温度25℃时输出2.982V。电流输出型的灵敏度一般为1μA/K。  相似文献   

6.
张洵  王鹏  靳东明 《半导体学报》2006,27(9):1676-1680
针对片上系统测温及其过温保护问题,提出了一种基于CMOS亚阈值特性制造的低功耗温度传感器.CSMC 0.6μm数模混合工艺仿真表明,其在-50~150℃的温度范围内,都能良好工作,且因为运放负反馈结构对电源电压具有较高的抑制,在2~6V的范围内都能得到正确的输出结果.芯片实测,温度灵敏度为0.77V/℃.因为基于CMOS亚阈值特性产生了电路的偏置电流,所以工作电流仅16μA.芯片面积300μm×250μm.该传感器的特性表明它非常适用于高容量的集成微系统中,在计算机、汽车电子、生物医学等领域有着广阔的应用前景.  相似文献   

7.
张洵  王鹏  靳东明 《半导体学报》2006,27(9):1676-1680
针对片上系统测温及其过温保护问题,提出了一种基于CMOS亚阈值特性制造的低功耗温度传感器.CSMC 0.6μm数模混合工艺仿真表明,其在-50~150℃的温度范围内,都能良好工作,且因为运放负反馈结构对电源电压具有较高的抑制,在2~6V的范围内都能得到正确的输出结果.芯片实测,温度灵敏度为0.77V/℃.因为基于CMOS亚阈值特性产生了电路的偏置电流,所以工作电流仅16μA.芯片面积300μm×250μm.该传感器的特性表明它非常适用于高容量的集成微系统中,在计算机、汽车电子、生物医学等领域有着广阔的应用前景.  相似文献   

8.
吴畏  邓宁 《微电子学》2017,47(6):784-787, 792
基于NXP 0.16 μm CMOS工艺,设计并实现了一种温度、电容混合传感器的接口电路。温度传感器的前端基于双极型晶体管的温度依赖特性,将温度信息转换为与温度有关的电压信息;电容传感器的前端基于开关电容电路,将电容值转换为与电容有关的电荷。两个传感器共用一个2阶Δ-Σ模数转换器,以减小芯片面积。测试结果表明,在-55 ℃~125 ℃范围内,温度传感器的准确度达到0.2 ℃(3σ);在0~3.8 pF的范围内,电容传感器每一次测量的FOM值可达0.76 pJ。整个芯片面积为0.2 mm2,供电电压为1.8 V,电流为4.6 μA。  相似文献   

9.
《今日电子》2005,(8):105-105
温度传感器LM94021及LM94022可提供4个不同增益让用户选择,分别是-5.5mV/℃、-8.2mV/℃、-10.9mV/℃及-13.6mV/℃,可监控-50~150℃范围内的温度。供电电压为1.5~5.5V,输出电压与感测的温度成反比,静态电流分别为9μA和5.4μA。  相似文献   

10.
衬底驱动超低压CMOS带隙基准电压源   总被引:2,自引:2,他引:0  
采用二阶温度补偿和电流反馈技术,设计实现了一种基于衬底驱动技术和电阻分压技术的超低压CMOS带隙基准电压源。采用衬底驱动超低压运算放大器作为基准源的负反馈,使其输出用于产生自身的电流源偏置,其电源抑制比(PSRR)为-63.8dB。采用Hspice仿真,在0.9V电源电压下,输出基准电压为572.45mV,温度系数为13.3ppm/°C。在0.8~1.4V电源电压范围内,输出基准电压变化3.5mV。基于TSMC0.25μm2P5MCMOS工艺实现的衬底驱动带隙基准电压源的版图面积为203μm×478.1μm。  相似文献   

11.
介绍了一种CMOS数字温度传感器的设计方法,并针对因工艺偏差所导致一致性差、成品率低的问题提出一种新型自校正技术.利用自校正技术可以有效抑制温度传感器核心模块的基准电压随工艺波动而变化,改善芯片之间的一致性.文中设置不同的工艺角对基准电压源进行仿真,通过对比开启与关闭自校正模块状态下基准电压的最大偏差,验证了自校正技术的有效性.本设计采用CSMCB5212 0.5 μm CMOS工艺实现,提供SPI数字接口,输出10-bit温度值.实际测试结果表明该温度传感器在-35℃~105℃温度范围内温度精度±1℃,整体功耗小于0.6mW.  相似文献   

12.
马卓  谭晓强  谢伦国  郭阳 《半导体学报》2010,31(11):115004-6
带隙基准是各种模拟/数模混合集成电路中的基础性组成部件,其温度稳定性是决定整体电路性能的重要因素之一。使用级联三极管的带隙基准结构能够有效的降低运算放大器输入失调对基准电路稳定性的影响。但是在CMOS工艺中,由于三极管器件的放大倍数值较小,“发射极-基极”电流对集电极电流的分流作用较为显著,致使基准电压输出存在较大的温度漂移。针对这个问题,提出了一种自适应的基极电流补偿的技术,能够有效的提高级联三级管的带隙基准电路中输出基准电压的温度稳定性,实现基准电压的温度响应曲线的曲率校正。基于0.13μm CMOS工艺的实现结果表明,输出基准电压的温度稳定性可达到6.2ppm/℃(-40℃~125℃),输出基准电压1.238V。  相似文献   

13.
《电讯技术》1999,39(6)
619-2线温度传感器  松下半导体公司的LM35型温度传感器因两方面的原因获得广泛应用:其生产的输出电压直接与所测量的温度(℃)成正比以及可测量零度以下的温度。但该器件的一个缺陷就是在其标准应用电路中,要通过3线链路将其与实际测量电路连接起来。本电路可彻底克服这一缺陷。当如图所示连接LM35时,在-5~40℃的温度范围内,就可采用2线链路。实际上,由于所示电路采用静态电流随温度改变的变化量,因此它实际上是一个与温度有关的电流源。计算电阻器R3和R4之值,输出电压为10mV℃-1。在精度要求高的…  相似文献   

14.
介绍了一种基于0.18μm CMOS工艺的高精度数字式温度传感器电路。在感温前端模块,通过利用动态匹配技术与斩波技术,并采用混合型一阶sigma-delta/SAR型ADC,在降低功耗的同时实现更高的分辨率,提高温度传感器的采样精度。经过仿真及测试验证,提出的基于混合型ADC的高精度数字式温度传感器电路,提供16 bit温度结果,应用时无需校准即可在-25~55℃的温度范围内达到±0.1℃精度。通过使能控制,极大程度地减少自发热对测温精度的影响,在1.7~5.5 V的电压范围内,电流最大值仅为5μA。在达到高精度的同时,降低了成本与功耗。  相似文献   

15.
基于Pt100铂热电阻的温度变送器设计与实现   总被引:2,自引:0,他引:2  
针对空压机专用变频器系统中温度检测的要求,设计并实现了一种三线制Pt100温度传感器。利用Pt100铂热电阻的电阻-温度函数关系,将温度信号转换为电压信号,经过两级放大电路对电压信号进行放大,再将电压信号转换为标准的电流信号输出。在A/D温度采集时,利用精密电流电压转换芯片,将电流信号转换为标准的电压信号。实践证明,该传感器有较高的稳定性和灵活性,性能良好且容易实现,成本低,值得推广应用。  相似文献   

16.
蔡敏  李炜 《半导体技术》2005,30(1):76-78
采用温度补偿技术设计了一种高性能的CMOS基准电流源电路,该电路采用N阱CMOS工艺实现.通过Cadence Spectres仿真和测试的结果表明,在-40~85℃的温度范围内,该电路输出基准电流的温度系数小于40ppm/℃,基准电流对电源电压的灵敏度小于0.1%.在3.3V电源电压下功耗仅为1.3mW,属于低温漂、低功耗的基准电流源.  相似文献   

17.
陈晖  景为平 《微电子学》2016,46(2):239-242, 246
针对目前超低功耗温度传感器误差大的问题,运用由精确比例电流源偏置的寄生衬底PNP晶体管,采用0.18 μm混合信号工艺设计了一种可集成于无源RFID标签的新型高精度温度传感器。传感器核心电路产生与绝对温度成正比的电压信号,通过新型开关电容积分器进行放大,并由改进的12位超低功耗逐次逼近模数转换器完成数字量化。仿真结果表明,单次温度转换时间为4.25 ms;在1.8 V工作电压下,平均电流为17.5 μA;在-37 ℃~91 ℃范围内,温度误差为 -0.1 ℃~0.43 ℃。  相似文献   

18.
介绍了一种用于环境温度监测的新型高精度宽电压范围的CMOS温度传感器,采用0.13μm标准CMOS工艺的厚氧器件实现,芯片面积为37μm×41μm。该温度传感器在-20~60°C的温度范围内,采用两点校正方法之后,温度误差为-0.2°C/0.5°C。该温度传感器可以在1.8~3.6V的电源电压范围内安全可靠地工作,并且具有较高的电源抑制比。测试结果表明,其输出电压斜率为3.9mV/°C,1.8V下功耗为1.3μW。  相似文献   

19.
曾健平  邹韦华  易峰  田涛 《半导体技术》2007,32(11):984-987
提出一种采用0.25 μm CMOS工艺的低功耗、高电源抑制比、低温度系数的带隙基准电压源(BGR)设计.设计中,采用了共源共栅电流镜结构,运放的输出作为驱动的同时也作为自身电流源的驱动,并且实现了与绝对温度成正比(PTAT)温度补偿.使用Hspice对其进行仿真,在中芯国际标准0.25 μm CMOS工艺下,当温度变化范围在-25~125℃和电源电压变化范围为4.5~5.5 V时,输出基准电压具有9.3×10-6 V/℃的温度特性,Vref摆动小于0.12 mV,在低频时具有85 dB以上的电源电压抑制比(PSRR),整个电路消耗电源电流仅为20μA.  相似文献   

20.
尹洪剑  万辉  高炜祺 《微电子学》2017,47(4):461-464
基于XFAB 0.6 μm CMOS工艺,设计了一种具有大电流驱动能力的低温度系数带隙基准电压源。通过设置不同温度系数的电阻的比值,实现带隙基准的2阶曲率补偿。采用新的电路结构,使基准源具有驱动10 mA以上负载电流的能力。经过Hspice仿真验证,常温基准输出电压为2.496 V,-55 ℃~125 ℃温度范围内的温度系数是3.1×10-6/℃;低频时,电源电压抑制比为-77.6 dB;供电电压在4~6 V范围内,基准输出电压的线性调整率为0.005%/V;负载电流在0~10 mA范围内,基准输出电压波动为219 μV,电流源负载调整率为0.022 mV/mA。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号