首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
聚晶金刚石复合片产品内部普遍存在残余应力,这是造成其非正常失效的主要因素。我们详细研究了金刚石复合片内部残余应力的组成,并采用X射线衍射仪建立了聚晶金刚石复合片残余应力的检测方法,研究了聚晶金刚石复合片的残余应力分布规律。利用XRD检测残余应力的方法,分别研究了聚晶金刚石层厚度、金刚石粒度尺寸、两相界面结合形状以及金属Co对复合片的残余应力的影响规律,为控制PDC内部应力提供参考。结果显示:金刚石层表面残余应力最大的压应力在中心位置,从中心到边缘,应力的大小逐渐降低;PCD层与硬质合金基体界面附近的应力值对PDC使用性能的影响最大。   相似文献   

2.
在CuCr0.5基体上复合电沉积Cu-Diamond“上砂”层,用模压法将“上砂”层中的金刚石压入基体中,在纳米铜悬浮液中补粉+模压来填充“V”型沟槽,最后烧结形成与基体结合牢固的Cu-Diamond复合层。用扫描电镜对不同制备阶段的Cu-Diamond进行研究,并用电阻应变分析法对Cu-Diamond的表面热膨胀系数进行了评估。结果表明:用W40金刚石粉制备的Cu-Diamond层模压后金刚石/基体界面出现“V”型沟槽,在纳米铜悬浮液中补粉+模压,填充在“V”型沟槽中的铜粉疏松,经900 ℃+60 min烧结后,“V”型沟槽得到完整填充。当Cu-Diamond复合层中金刚石体积含量约为40~45%时,表面热膨胀系数为11.7×10-6/℃。  相似文献   

3.
应用粉末层铺法制备梯度聚晶金刚石复合片材料,并通过SEM、XRD、显微硬度等对该材料进行组织与性能分析。结果表明,在以钴作粘结剂的聚晶金刚石层中金刚石相实现了D-D结合,通过梯度过渡层与硬质合金基体结合既保证了聚晶金刚石的硬度,又改善了界面的结合状况,从而提高了聚晶金刚石复合片的性能和使用寿命。  相似文献   

4.
尹超  毛善文 《硬质合金》2016,(4):275-282
CVD金刚石涂层硬质合金刀具结合了金刚石和硬质合金的优异性能,是切削加工的理想材料,具有广阔的发展前景。当前限制CVD金刚石涂层刀具应用的主要问题是金刚石涂层与刀具基体之间的附着性能较差,其主要原因是粘接相Co对CVD沉积存在不利影响以及涂层与基体之间热膨胀系数存在较大差异。本文综述了提高界面结合强度和降低涂层表面粗糙度的方法,重点介绍了在界面添加过渡层来提高界面结合强度,并指出在硬质合金基体和CVD涂层之间添加过渡层和开发纳米CVD涂层是CVD金刚石涂层刀具今后的发展方向。  相似文献   

5.
《磨料磨具通讯》2006,(5):17-17
一种金刚石和钛和镍和银复合结构。金刚石表面有一钛层;在所述的钛层上有一镍层,在所述的镍层的表层有一银层。本实用新型优点主要在于:这种金刚石界面与复合镀层有强力金属键结合的金刚石,可以提高金刚石与结合剂的结合强度和把持力;提高金刚石颗粒的颗粒强度;赋予表面镀层金刚石较高的导热性,对金刚石起隔离保护作用,使其在高温烧结和高温磨削发生氧化、石墨化、溶剂化或生成碳化物。具有Ti—Ni—Cu复合镀层的金刚石主要用于树脂结合剂的磨具,  相似文献   

6.
在合适的工艺下,采用Ag-Cu-Ti钎料实现了金刚石与钢基体的高强度连接,并剖析了Ag-Cu-Ti钎料与金刚石的界面微区结构.通过对界面处的成分分布和深腐蚀后碳化物TiC形貌的观察,分析了Ti的作用机理、新生化合物TiC的形貌及生长规律.结果表明:在一定的条件下,Ti元素与组成金刚石的碳元素发生反应形成TiC层;碳化物层使钎料与金刚石之间产生冶金结合,并在其界面上形成了金刚石/TiC/钎料/钢基体的梯度结合层.  相似文献   

7.
本论介绍了钎焊金刚石的一种新工艺。经真空微蒸发镀钛的金刚石颗粒,采用电镀方法下一步复合镀覆金属镍,在金刚石表面形成一种复合支。因为这种复合镀层与金刚石界面结合,采用高频感应加热的方法,选胜使用合适的钎料,在空气中可以顺利实现金刚石与金属基体的焊接。结果表明,钎料与金刚石之间完全润湿,金刚石与基体焊接牢固,利用钎焊导向棒测定其界面结合强度达到140MPa。  相似文献   

8.
利用扫描电镜、光学影像仪等分析检测仪器,在不损伤被检样品的物理性能、状态和内部结构的条件下,从聚晶金刚石层与基体的界面结构,微观的均匀性以及金刚石层D—D键的结合情况等方面定性判断PDC性能的优劣。研究发现:金刚石和硬质合金界面结构为非平面连接时,其性能优于传统的平面结合型;PDC材料聚晶金刚石层中金刚石在空间相连形成D-D结合立体网络状结构,这是PDC材料力学性能优异的主要原因,且D—D键越多,复合片性能越好。  相似文献   

9.
金刚石涂层用硬质合金基体表面预处理研究新进展   总被引:6,自引:0,他引:6  
从孔隙的形成、界面非金刚石物的形成以及较高残余应力等3个不利方面,分析和综述了影响金刚石涂层与硬质合金基体粘结性的主要因素。着重对浸蚀基体表面除去Co相或浸蚀WC相,在基体与涂层之间形成中间过渡层或中间化合物,基体表面机械或热处理等硬质合金基体表面预处理,改善涂层与基体粘结性的3种方法和途径进行了阐述。  相似文献   

10.
采用真空微蒸发-扩散镀技术,在金刚石表面镀覆不同厚度的钨层,并结合真空熔渗法制备金刚石铜复合材料。通过X射线衍射分析镀覆层相结构,采用扫描电镜观察镀覆层表面微观形貌和复合材料中金刚石与铜界面结合形貌,分析金刚石表面镀钨层组织、结构及厚度对金刚石/铜复合材料热导率的影响。结果表明:金刚石表面镀覆钨能改善与基体的润湿性;随着镀覆层均匀性和厚度增加,复合材料热导率先增加后减小;完整均匀的镀覆层可以获得较高界面热导。  相似文献   

11.
Thermal residual stress of polycrystalline diamond compacts   总被引:1,自引:0,他引:1  
Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sintering at high pressure and high temperature were investigated using finite element simulation,laboratory tests and theoretical analysis.The obtained results show that although compressive residual stresses exist both in the interface of PCD table and in the most region of PCD table surface, the...  相似文献   

12.
复合镀覆Ti—Ni金刚石的钎焊应用   总被引:4,自引:2,他引:2  
镀覆技术的研究进展表明:经过真空微蒸发镀钛、钨的金刚石单晶或聚晶,可以采用化学镀或电镀的方法在钛或钨镀层上进一步镀覆镍、钴、铬等金属,这种复合镀层与金刚石界面强力冶金结合,并且可以采用各种钎焊方法实现金刚石与多种金属基体的焊接。复合镀覆的金刚石可用于各类表镶工具的制造,获得高出刃、高磨粘结合强度,使金刚石表镶工具的使用寿命和加工效率大幅度提高。  相似文献   

13.
CVD金刚石膜因特有的物理化学性质,具有发展成为新一代光学材料的前景。但由于CVD金刚石膜自身局限性导致其理论透过率不到71%,在金刚石膜表面镀制增透膜,通过改变增透膜组成成分、显微组织和晶体结构,可有效地改善CVD金刚石膜自身理论透过率的问题。首先,介绍了CVD金刚石表面镀制单层增透膜增透原理,并总结了物理和化学气相沉积技术制备增透膜的优缺点。然后,重点综述了近年来CVD金刚石表面氮化物、金属氧化物和稀土金属氧化物等增透膜材料的研究进展,详细分析了增透膜制备参数、热处理工艺、衬底表面改性和掺杂工艺对增透膜整体组织和性能影响的规律。其中优化增透膜沉积温度、氧分压和热处理等工艺参数,是通过改变增透膜微观组织形貌以及晶体结构来提高其光学透过性能,而改变衬底表面结构能够通过改变增透膜与基体之间的成键方式来提升界面结合能力,而稀土元素掺杂方式是通过改变增透膜化学组成成分来改善增透膜的光学透过性能,并指出掺杂元素成型机理和影响机制。最后,展望了未来CVD金刚石表面增透膜的发展方向。  相似文献   

14.
选用钛作为金刚石膜和钼基体间的中间过渡层,探讨使用过渡层减小热残余应力的可能性.建立三维有限元分析模型,对使用钛过渡层前、后,金刚石膜内及界面处的热残余应力分量的分布分别进行模拟和比较;考虑了热膨胀系数随温度的变化;讨论了热残余应力对金刚石膜失效的影响.结果表明:采用钛过渡层后,热残余应力的特性和分布规律并未改变,但各应力分量的大小均有一定的减小.本文所建三维的有限元分析模型与已往的一维解析模型都能得出金刚石膜沿其厚度上的径向应力分布,但前者还能得出金刚石膜在其内部及界面处的多个应力分量沿径向或沿厚度的分布规律.  相似文献   

15.
借助XRD方法对不同生产工艺、无齿、有齿型硬质合金基底制备的PDC制品进行了研究。表明:聚晶金刚石复合片在聚晶金刚石层内存在着宏观应力和微观应力;聚晶金刚石复合片表面应力大小可以反映聚晶金刚石层的应力存在状况;聚晶金刚石复合片残余应力的大小与XRD图谱的斜率成正比,因此XRD方法可以用于聚晶金刚石复合片应力的表征。  相似文献   

16.
聚晶金刚石复合片(PDC)残余应力的检测方法   总被引:1,自引:0,他引:1  
本文介绍了三种近期国外检测PDC残余应力的方法:应变片测试法、中子衍射法和带高能同步加速器X射线衍射法。三种方法均能有效检测出PDC的残余应力且各有其特点。应变片测试法比较直观、简单,不过这种方法是破坏性的,而且在材料去除过程中容易引入误差;中子衍射具有较深穿透力,然而较弱的散射使其取样体积不能小于1mm^3;高能同步加速器产生的散射X射线能穿透直径19mm的PDC样品,空间分辨率高,测量体积可精确至0.014mm^3,能详细地呈现出金刚石层、D/WC界面以及WC基体外径部分的二维应变分布情况,但测试易受Co峰的干扰。  相似文献   

17.
Exaggerated tungsten carbide grain growth is common at the interface between the diamond table and the cobalt-cemented tungsten carbide (WC-Co) substrate in polycrystalline diamond cutters (PDC). The exaggerated WC grains at the interface can grow as large as 50 μm with an aspect ratio of 50:1. These large grains can also grow as clusters. The presence of large WC grains/clusters creates weakness at the diamond-substrate interface and impairs the strength of the PDC tool. In the present investigation, we tried to understand the root cause of exaggerated WC grain growth at the interface. Our findings show that WC grain growth at the interface decreases with a decrease in the carbon/tungsten (C/W) ratio. By adding 5 wt.% pure tungsten powder to the diamond, the C/W ratio decreased and we found no WC grain growth. By adding fully stoichiometric WC, which has 6.13 wt.% carbon, grain growth was reduced but still observed. Sintering on a substrate having η-phase (carbon deficient phase) also decreased the C/W ratio, and we did not observe WC grain growth.  相似文献   

18.
本文介绍了近年来PDC钻头的设计理念和PDC切削齿的最新技术动向,PDC切削齿的若干关键技术,以及国际上最新采用的测试技术。通过提高金刚石含量,加强D-D键结合,优化界面几何形状,减少内应力,精细控制各种原辅材料的质量,最终提高PDC切削齿的综合性能。文中介绍了PDC超声波逐行扫描探伤技术,最新的重负荷检测耐磨性能,以及耐热性和抗冲击性的检测技术。最后还对石油钻井市场现状进行了介绍。  相似文献   

19.
影响聚晶金刚石复合片性能的因素及改进方法   总被引:2,自引:0,他引:2  
聚晶金刚石复合片作为PDC钻头的切削元件,其质量的好坏直接影响着整个钻头的钻进速率及使用寿命。影响复合片质量和性能的主要因素是金刚石与粘接剂的配比、粘接剂的种类、金刚石的粒度、金刚石/硬质合金界面结构以及烧结工艺等。本文探讨了不同种类粘接剂的优、缺点;介绍了如何通过改变金刚石颗粒的粒度分布提高复合片的耐磨性和抗冲击性能;在金刚石,硬质合金界面处添加碳化物形成元素薄片以及采用金属镀层(如W等)实现界面的冶金结合,从而提高界面的结合强度;采用锯齿形界面并伴随成分梯度过渡、以及采用正弦曲线形界面结构可明显改善复合片的性能。这些方法可为工业上生产优质复合片提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号