首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The effect of temperature on the small-signal radio-frequency (RF) performance of submicron AlGaN/GaN high-electron-mobility transistors on SiC has been studied from room temperature (RT) up to 600 K. A relation between ambient and channel temperatures has been established by means of finite-element simulations. The thermal behavior of the intrinsic parameters $C_{rm gs}$, $C_{rm gd}$, $g_{m, {rm int}}$, and $g_{rm ds}$ has been extracted accurately from RF measurements by means of the small-signal equivalent circuit. Main dc parameters $(I_{D}, g_{m, {rm ext}})$ show reductions close to 50% between RT and 600 K, mainly due to the decrease in the electron mobility and drift velocity. In the same range, $f_{T}$ and $f_{max}$ suffer a 60% decrease due to the reduction in $g_{m, {rm ext}}$ and a slight increase of $C_{rm gs}$ and $C_{rm gd}$. An anomalous thermal evolution of $C_{rm gd}$ at low $I_{D}$ has been identified, which is indicative of the presence of traps.   相似文献   

2.
The extraction of the effective mobility on $hbox{In}_{0.53} hbox{Ga}_{0.47}hbox{As}$ metal–oxide–semiconductor field-effect transistors (MOSFETs) is studied and shown to be greater than 3600 $hbox{cm}^{2}/hbox{V} cdot hbox{s}$. The removal of $C_{rm it}$ response in the split $C$$V$ measurement of these devices is crucial to the accurate analysis of these devices. Low-temperature split $C$$V$ can be used to freeze out the $D_{rm it}$ response to the ac signal but maintain its effect on the free carrier density through the substrate potential. Simulations that match this low-temperature data can then be “warmed up” to room temperature and an accurate measure of $Q_{rm inv}$ is achieved. These results confirm the fundamental performance advantages of $hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ MOSFETs.   相似文献   

3.
We report on performance improvement of $n$-type oxide–semiconductor thin-film transistors (TFTs) based on $hbox{TiO}_{x}$ active channels grown at 250 $^{circ}hbox{C}$ by plasma-enhanced atomic layer deposition. TFTs with as-grown $hbox{TiO}_{x}$ films exhibited the saturation mobility $(mu_{rm sat})$ as high as 3.2 $hbox{cm}^{2}/hbox{V}cdothbox{s}$ but suffered from the low on–off ratio $(I_{rm ON}/I_{rm OFF})$ of $hbox{2.0} times hbox{10}^{2}$. $hbox{N}_{2}hbox{O}$ plasma treatment was then attempted to improve $I_{rm ON}/I_{rm OFF}$. Upon treatment, the $hbox{TiO}_{x}$ TFTs exhibited $I_{rm ON}/I_{rm OFF}$ of $hbox{4.7} times hbox{10}^{5}$ and $mu_{rm sat}$ of 1.64 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, showing a much improved performance balance and, thus, demonstrating their potentials for a wide variety of applications such as backplane technology in active-matrix displays and radio-frequency identification tags.   相似文献   

4.
The realization of high-performance 0.1-$muhbox{m}$ gate AlGaN/GaN high-electron mobility transistors (HEMTs) grown on high-resistivity silicon substrates is reported. Our devices feature cutoff frequencies as high as $f_{T} = hbox{75} hbox{GHz}$ and $f_{rm MAX} = hbox{125} hbox{GHz}$, the highest values reported so far for AlGaN/GaN HEMTs on silicon. The microwave noise performance is competitive with results achieved on other substrate types, such as sapphire and silicon carbide, with a noise figure $F = hbox{1.2}{-}hbox{1.3} hbox{dB}$ and an associated gain $G_{rm ass} = hbox{8.0}{-}hbox{9.5} hbox{dB}$ at 20 GHz. This performance demonstrates that GaN-on-silicon technology is a viable alternative for low-cost millimeter-wave applications.   相似文献   

5.
$hbox{LaAlO}_{3}$ is a promising candidate for gate dielectric of future VLSI devices. In this letter, n-channel metal–oxide–semiconductor field-effect transistors with $hbox{LaAlO}_{3}$ gate dielectric were fabricated, and the electron mobility degradation mechanisms were studied. The leakage current density is $hbox{7.6} times hbox{10}^{-5} hbox{A/cm}^{2}$ at $-!$ 1 V. The dielectric constant is 17.5. The surface-recombination velocity, the minority-carrier lifetime, and the effective capture cross section of surface states were extracted from gated-diode measurement. The rate of threshold voltage change with temperature $(Delta V_{T} / Delta T)$ from 11 K to 400 K is $-!$ 1.51 mV/K, and the electron mobility limited by surface roughness is proportional to $E_{rm eff}^{-0.66}$.   相似文献   

6.
For the first time, internal spacers have been introduced in multichannel CMOSFET (MCFET) structures, featuring a decrease of the intrinsic $CV/I$ delay by 39%. The process steps introduced for this new MCFET technological option are studied and optimized in order to achieve excellent $I_{rm ON}/I_{rm OFF}$ characteristics (NMOS: 2.33 $hbox{mA}/muhbox{m}$ at 27 $hbox{pA}/muhbox{m}$ and PMOS: 1.52 $hbox{mA}/muhbox{m}$ at 38 $hbox{pA}/muhbox{m}$). A gate capacitance $C_{rm gg}$ reduction of 32% is measured, thanks to $S$-parameter extraction. Moreover, a significant improvement of the analogical figure of merit is measured compared with optimized fully depleted silicon-on-insulator planar reference; the voltage gain $A_{rm VI}(= g_{m}/g_{rm ds})$ is improved by 92%.   相似文献   

7.
New hydrogen-sensing amplifiers are fabricated by integrating a GaAs Schottky-type hydrogen sensor and an InGaP–GaAs heterojunction bipolar transistor. Sensing collector currents ( $I_{rm CN}$ and $I_{rm CH}$) reflecting to $hbox{N}_{2}$ and hydrogen-containing gases are employed as output signals in common-emitter characteristics. Gummel-plot sensing characteristics with testing gases as inputs show a high sensing-collector-current gain $(I_{rm CH}/I_{rm CN})$ of $≫hbox{3000}$. When operating in standby mode for in situ long-term detection, power consumption is smaller than 0.4 $muhbox{W}$. Furthermore, the room-temperature response time is 85 s for the integrated hydrogen-sensing amplifier fabricated with a bipolar-type structure.   相似文献   

8.
Low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) with high- $kappa$ gate dielectrics and plasma surface treatments are demonstrated for the first time. Significant field-effect mobility $mu_{rm FE}$ improvements of $sim$86.0% and 112.5% are observed for LTPS-TFTs with $hbox{HfO}_{2}$ gate dielectric after $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments, respectively. In addition, the $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments can also reduce surface roughness scattering to enhance the field-effect mobility $mu_{rm FE}$ at high gate bias voltage $V_{G}$, resulting in 217.0% and 219.6% improvements in driving current, respectively. As a result, high-performance LTPS-TFT with low threshold voltage $V_{rm TH} sim hbox{0.33} hbox{V}$, excellent subthreshold swing S.S. $sim$0.156 V/decade, and high field-effect mobility $mu_{rm FE} sim hbox{62.02} hbox{cm}^{2}/hbox{V} cdot hbox{s}$ would be suitable for the application of system-on-panel.   相似文献   

9.
High microwave-noise performance is realized in AlGaN/GaN metal–insulator semiconductor high-electron mobility transistors (MISHEMTs) on high-resistivity silicon substrate using atomic-layer-deposited (ALD) $hbox{Al}_{2}hbox{O}_{3}$ as gate insulator. The ALD $hbox{Al}_{2}hbox{O}_{3}/hbox{AlGaN/GaN}$ MISHEMT with a 0.25- $muhbox{m}$ gate length shows excellent microwave small signal and noise performance. A high current-gain cutoff frequency $f_{T}$ of 40 GHz and maximum oscillation frequency $f_{max}$ of 76 GHz were achieved. At 10 GHz, the device exhibits low minimum-noise figure $(hbox{NF}_{min})$ of 1.0 dB together with high associate gain $(G_{a})$ of 10.5 dB and low equivalent noise resistance $(R_{n})$ of 29.2 $Omega$. This is believed to be the first report of a 0.25-$muhbox{m}$ gate-length GaN MISHEMT on silicon with such microwave-noise performance. These results indicate that the AlGaN/GaN MISHEMT with ALD $hbox{Al}_{2}hbox{O}_{3}$ gate insulator on high-resistivity Si substrate is suitable for microwave low-noise applications.   相似文献   

10.
We present a detailed experimental and theoretical study of the ultrahigh repetition rate AO $Q$ -switched ${rm TEM}_{00}$ grazing incidence laser. Up to 2.1 MHz $Q$-switching with ${rm TEM}_{00}$ output of 8.6 W and 2.2 MHz $Q$ -switching with multimode output of 10 W were achieved by using an acousto-optics $Q$ -switched grazing-incidence laser with optimum grazing-incidence angle and cavity configuration. The crystal was 3 at.% neodymium doped Nd:YVO$_{4}$ slab. The pulse duration at 2 MHz repetition rate was about 31 ns. The instabilities of pulse energy at 2 MHz repetition rate were less than ${pm}6.7hbox{%}$ with ${rm TEM}_{00}$ operation and ${pm}3.3hbox{%}$ with multimode operation respectively. The modeling of high repetition rate $Q$-switched operation is presented based on the rate equation, and with the solution of the modeling, higher pump power, smaller section area of laser mode, and larger stimulated emission cross section of the gain medium are beneficial to the $Q$-switched operation with ultrahigh repetition rate, which is in consistent with the experimental results.   相似文献   

11.
In this letter, a polycrystalline-silicon thin-film transistor (poly-Si TFT) with a high- $k$ $hbox{PrTiO}_{3}$ gate dielectric is proposed for the first time. Compared to TFTs with a $hbox{Pr}_{2}hbox{O}_{3}$ gate dielectric, the electrical characteristics of poly-Si TFTs with a $hbox{PrTiO}_{3}$ gate dielectric can be significantly improved, such as lower threshold voltage, smaller subthreshold swing, higher $I_{rm on}/I_{rm off}$ current ratio, and larger field-effect mobility, even without any hydrogenation treatment. These improvements can be attributed to the high gate capacitance density and low grain-boundary trap state. All of these results suggest that the poly-Si TFT with a high- $k$ $hbox{PrTiO}_{3}$ gate dielectric is a good candidate for high-speed and low-power display driving circuit applications in flat-panel displays.   相似文献   

12.
This paper presents a complete 0.13$,muhbox{m}$ SiGe BiCMOS technology fully dedicated to millimeter-wave applications, including a high-speed (230/280 GHz ${rm f}_{rm T}/{rm f}_{rm MAX}$) and medium voltage SiGe HBT, thick-copper back-end designed for high performance transmission lines and inductors, 2 $hbox{fF}/muhbox{m}^{2}$ high-linearity MIM capacitor and complementary double gate oxide MOS transistors. Details are given on HBT integration, reliability and models as well as on back-end devices models.   相似文献   

13.
Deeply-etched ${hbox{SiO}}_{2}$ optical ridge waveguides are fabricated and characterized. A detailed discussion of the fabrication process (especially for the deep etching process) is presented. The measured propagation losses for the fabricated waveguides with different core widths range from $0.33sim {hbox {0.81}}~{hbox {dB}}/{hbox {mm}}$. The loss is mainly caused by the scattering due to the sidewall roughness. The losses in bending sections are also characterized, which show the possibility of realizing a small bending radius (several tens of microns). 1 $,times {rm N}$ ( ${rm N}=2$, 4, 8) multimode interference couplers based on the deeply-etched ${hbox{SiO}}_{2}$ ridge waveguide are also fabricated and show fairly good performances.   相似文献   

14.
In this letter, we demonstrate the record small-signal performance from N-polar GaN-based metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) by using a GaN spacer structure with an AlN barrier to reduce alloy scattering. High Si doping in GaN without excessive surface roughening has been achieved using a digital doping scheme. A low ohmic contact resistance of 0.16 $Omega cdot hbox{mm}$ was measured. Submicrometer gates were fabricated by electron-beam lithography using a triple-layer resist process. $f_{T}$ and $f_{rm MAX}$ of 47 and 81 GHz, respectively, were obtained for the 150-nm-gate-length device. Further analysis has been done to understand the effect of access resistance on the high-frequency performance, defining a pathway for getting a higher gain and thus achieving a better high-frequency performance from N-polar GaN-based HEMTs.   相似文献   

15.
For a variety of solar cells, it is shown that the single exponential $J{-}V$ model parameters, namely—ideality factor $eta$ , parasitic series resistance $R_{s}$, parasitic shunt resistance $R_{rm sh}$, dark current $J_{0}$, and photogenerated current $J_{rm ph}$ can be extracted simultaneously from just four simple measurements of the bias points corresponding to $V_{rm oc}$, $sim!hbox{0.6}V_{rm oc}$, $J_{rm sc}$, and $sim! hbox{0.6}J_{rm sc}$ on the illuminated $J{-}V$ curve, using closed-form expressions. The extraction method avoids the measurements of the peak power point and any $dJ/dV$ (i.e., slope). The method is based on the power law $J{-}V$ model proposed recently by us.   相似文献   

16.
We provide the first report of the structural and electrical properties of $hbox{TiN/ZrO}_{2}$/Ti/Al metal–insulator–metal capacitor structures, where the $hbox{ZrO}_{2}$ thin film (7–8 nm) is deposited by ALD using the new zirconium precursor ZrD-04, also known as Bis(methylcyclopentadienyl) methoxymethyl. Measured capacitance–voltage ($C$$V$) and current–voltage ( $I$$V$) characteristics are reported for premetallization rapid thermal annealing (RTP) in $hbox{N}_{2}$ for 60 s at 400 $^{circ}hbox{C}$, 500 $^{circ}hbox{C}$, or 600 $^{ circ}hbox{C}$. For the RTP at 400 $^{circ}hbox{C}$ , we find very low leakage current densities on the order of nanoamperes per square centimeter at a gate voltage of 1 V and low capacitance equivalent thickness values of $sim$ 0.9 nm at a gate voltage of 0 V. The dielectric constant of $ hbox{ZrO}_{2}$ is 31 $pm$ 2 after RTP treatment at 400 $^{circ}hbox{C}$.   相似文献   

17.
Ultra-compact phase shifters are presented. The proposed phase-shifting circuits utilize the lumped element all-pass networks. The transition frequency of the all-pass network, which determines the size of the circuit, is set to be much higher than the operating frequency. This results in a significantly small chip size of the phase shifter. To verify this methodology, 5-bit phase shifters have been fabricated in the $S$ - and $C$ -band. The $S$ -band phase shifter, with a chip size of 1.87 mm $,times,$0.87 mm (1.63 mm $^{2}$), has achieved an insertion loss of ${hbox{6.1 dB}} pm {hbox{0.6 dB}}$ and rms phase-shift error of less than 2.8$^{circ}$ in 10% bandwidth. The $C$ -band phase shifter, with a chip size of 1.72 mm $,times,$0.81 mm (1.37 mm $^{2}$), has demonstrated an insertion loss of 5.7 dB $pm$ 0.8 dB and rms phase-shift error of less than 2.3 $^{circ}$ in 10% bandwidth.   相似文献   

18.
A fully integrated 40-Gb/s transceiver fabricated in a 0.13-$mu$m CMOS technology is presented. The receiver operates at a 20-GHz clock performing half-rate clock and data recovery. Despite the low ${rm f}_{rm T}$ of 70 GHz, the input sampler achieves 10-mV sensitivity using pulsed latches and inductive-peaking techniques. In order to minimize the feedback latency in the bang-bang controlled CDR loop, the proportional control is directly applied to the VCO, bypassing the charge pump and the loop filter. In addition, the phase detection logic operates at 20 GHz, eliminating the need for the deserializers for the early/late timing signals. The four clock phases for the half-rate CDR are generated by a quadrature LC-VCO with microstrip resonators. A linear equalizer that tunes the resistive loading of an inductively-peaked CML buffer can improve the eye opening by 20% while operating at 39 Gb/s. The prototype transceiver occupies 3.4$, times ,$2.9 mm$^{2}$ with power dissipation of 3.6 W from a 1.45-V supply. With the equalizer on, the transmit jitter of the 39-Gb/s 2$^{15}-1$ PRBS data is 1.85 ${rm ps}_{rm rms}$ over a WB-PBGA package, an 8-mm PCB trace, an on-board 2.4-mm connector, and a 1 m-long 2.4-mm coaxial cable. The recovered divided-by-16 clock jitter is 1.77 ${rm ps}_{rm rms}$ and the measured BER of the transceiver is less than $10^{- 14}$ .   相似文献   

19.
Double-reduced-surface-field (RESURF) MOSFETs with $hbox{N}_{2}hbox{O}$ -grown oxides have been fabricated on the 4H-SiC $(hbox{000} bar{hbox{1}})$ face. The double-RESURF structure is effective in reducing the drift resistance, as well as in increasing the breakdown voltage. In addition, by utilizing the 4H-SiC $(hbox{000}bar{hbox{1}})$ face, the channel mobility can be increased to over 30 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, and hence, the channel resistance is decreased. As a result, the fabricated MOSFETs on 4H-SiC $( hbox{000}bar{hbox{1}})$ have demonstrated a high breakdown voltage $(V_{B})$ of 1580 V and a low on-resistance $(R_{rm ON})$ of 40 $hbox{m}Omega cdothbox{cm}^{2}$. The figure-of-merit $(V_{B}^{2}/R_{rm ON})$ of the fabricated device has reached 62 $hbox{MW/cm}^{2}$, which is the highest value among any lateral MOSFETs and is more than ten times higher than the “Si limit.”   相似文献   

20.
Self-powered microsystems like wireless microsensors and biomedical implants derive power from in-package minibatteries that can only store sufficient energy to sustain the system for a short life. The environment, however, is a rich source of energy that, when harnessed, can replenish the otherwise exhausted battery. The problem is harvesters generate low power levels and the electronics required to transfer the energy to charge a battery can easily demand more than the power produced. This paper presents how a $1times 1~{hbox {mm}}^{2}$ 0.7-$mu{hbox {m}}$ BiCMOS vibration-supplied electrostatic energy-harvesting system IC produces usable energy. The IC charges and holds the voltage across a vibration-driven variable capacitor $C_{VAR}$ so that ambient kinetic energy can induce $C_{VAR}$ to generate current into the battery when capacitance decreases, as the plates separate. The precharger, harvester, monitoring, and control microelectronics draw enough power to operate, yet allow the system to yield (experimentally) 1.27, 2.14, and 2.87 nJ per vibration cycle for battery voltages at 2.7, 3.5, and 4.2 V, which at 30 Hz produce 38.1, 64.2, and 86.1 nW. Experiments further show that the harvester system prototype charges $1~mu {rm F}$ (emulating a small thin-film Li Ion) from 3.5 to 3.81 V in 35 s.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号