首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
When NbC–30 wt% Co powder compact is sintered at various temperatures where NbC grains (with small amounts of Co) coexist with a liquid Co–NbC matrix, the NbC grains undergo a surface roughening transition with temperature increase and the grain growth changes from abnormal to normal growth. When sintered at 1400°C, the grains are polyhedral with sharp edges (and corners) and grow abnormally because their singular surfaces move by nucleation of surface steps. When sintered at 1600°C, the edges become round, indicating the surface roughening transition. The grains still grow abnormally, but their number density is larger than that at 1400°C because of the smaller surface step free energy. When sintered at 1820°C, the grains are nearly spherical, but the flat-surface segments still remain. The grain growth at this temperature is nearly normal because of very small surface step free energy. The surface roughening transition is reversed when a specimen initially sintered at 1820°C is heat-treated again at 1400°C, but some grains show transition shapes with nearly flat edges and slope discontinuities (shocks).  相似文献   

2.
TiC-Ni-Mo cermet specimens were prepared by using a mixture of fine (1.5 μm) and coarse (30 μm) TiC powders. When the fraction of fine TiC particles was 80%, a (Ti,Mo,Ni)C complex carbide phase was observed deposited on the coarse TiC particles and resulted in a typical cored structure. As the fraction of fine TiC particles decreased, the coarse TiC particles exhibited a unique microstructural evolution with the development of a concave interface. This microstructural change of the coarse TiC grains can be explained in terms of the coherency strain energy.  相似文献   

3.
Ti/Si/2TiC powders were prepared using a mixture method (M) and a mechanical alloying (MA) method to fabricate Ti3SiC2 at 1200°–1400°C using a pulse discharge sintering (PDS) technique. The results showed that the Ti3SiC2 samples with <5 wt% TiC could be rapidly synthesized from the M powders; however, the TiC content was always >18 wt% in the MA samples. Further sintering of the M powder showed that the purity of Ti3SiC2 could be improved to >97 wt% at 1250°–1300°C, which is ∼200°–300°C lower than that of sintered Ti/Si/C and Ti/SiC/C powders using the hot isostatic pressing (HIPing) technique. The microstructure of Ti3SiC2 also could be controlled using three types of powders, i.e., fine, coarse, or duplex-grained, within the sintering temperature range. In comparison with Ti/Si/C and Ti/SiC/C mixture powders, it has been suggested that high-purity Ti3SiC2 could be rapidly synthesized by sintering the Ti/Si/TiC powder mixture at relatively lower temperature using the PDS technique.  相似文献   

4.
Three kinds of single-crystalline alumina plates with the crystallographic planes of C, m, and R were diffusion-bonded with liquid-phase sintered (98)alumina-(2)anorthite (in wt%) plates (P) and then heat-treated at 1600°C under a Cr203-containing atmosphere. During the heat treatment, for all of the specimens studied, the anorthite liquid films between alumina plates migrated to grains with surface orientation corresponding to higher coherency strain energy. This result is in better agreement with a prediction based on the coherency strain theory than the previous one obtained for grain-boundary migration. The discrepancy between the predicted and previously observed migration directions of some grain boundaries in alumina may therefore be attributed to an effect of grain-boundary structure and stress transmission across the boundary.  相似文献   

5.
Two Ti(C,N)–WC powder mixtures, one containing 0.88 wt% Co and the other 6.2 wt% Ni + 2.9 wt% Co, were fabricated by different routes: pressureless and gas-pressure sintering in argon and nitrogen, and hot-pressing under vacuum. The microstructures of all the sintered samples consisted of grains with a core/rim structure, the core being Ti(C,N) and the rim (Ti,W)(C,N). An inner rim also was present at the core/rim interface. The more highly doped materials also had an intergranular Ni-Co-Ti-W binder phase. The compositions and cell parameters of the hard phases, as well as of the binder, were analyzed. The nitrogen partial pressure in the sintering furnace was the main factor that influenced grain growth and phase composition. In fact, sintering under argon enhanced grain growth and was accompanied by a lower tungsten content in the rim. The influence of the microstructure on some mechanical properties (hardness, flexural strength, toughness, and Young's modulus) also was investigated. Flexural-strength values up to 1550 MPa at room temperature and 1200 MPa at 800°C, and fracture-toughness values up to 8 MPa·m1/2 were measured, depending on the starting composition and processing conditions.  相似文献   

6.
Liquid films and grain boundaries in the TiN–Ni system migrate when carbon atoms are added as TiC. Ti(NC) solid solution grows at the expense of TiN solid through liquid film migration (LFM), and its general characteristics are similar to those of the previously investigated Mo–Ni and W–Ni systems. But, in this system, precipitating solid–liquid interfaces of migrating liquid films show faceting, which is caused by orientation-dependent interface-controlled reactions. With an increase of added TiC, the migration rate increases parabolically with the observed lattice parameter difference between the TiN and Ti(NC) solid, which is in agreement with the prediction of the coherency strain model. Chemically induced grain-boundary migration (CIGM) also occurs, together with LFM. The results in this study show that LFM and CIGM occur in a system having relatively strong covalent bonding.  相似文献   

7.
《Ceramics International》2022,48(9):12675-12691
In the present study, the effect of simultaneous incorporation of SiC and WC additives on the densification behaviour and microstructural development of TiC-based composites is studied. Four different TiC-SiC-WC (TSW) composites with varying SiC and WC content were synthesized by ultrasonic wet milling followed by spark plasma sintering (SPS) at 1750 °C for 5 min under 40 MPa external pressure. The average particle size of the ultrasonic wet-milled mixture underwent an appreciable refinement from 2.48 μm (un-milled powder) to between 0.9 and 1.25 μm. The sintered compacts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thermodynamic assessment. All TSW sintered specimens exhibited a relative density of greater than 98% with TiC +10 wt% SiC +15 wt% WC reaching the highest value of 99.2%. The XRD analysis and microstructural evaluation confirmed the in-situ formation of Ti3SiC2 compound for specimens TiC +15 wt% SiC +10 wt% WC and TiC +20 wt% SiC +5 wt% WC as suggested by the thermodynamic evaluation. Besides, except for specimen TiC +20 wt% SiC +5 wt% WC, some of the SiC grains with unclean grain boundaries were found to be dissolved partially within the (Ti, W) C solid solution, thereby indicating the formation of (Ti, W, Si) C solid solutions as confirmed by the SEM/EDS analysis. The optimum hardness and indentation fracture toughness of 22.43 GPa and 6.54 MPa m½ were obtained for the samples TS10W15 and TS15W10, respectively. Crack deflection, branching, and bridging induced by the untwine SiC grains, partly un-dissolved WC particles, and (Ti, W) C solid solution phase are among the main toughening mechanisms responsible for improving the fracture toughness of the co-reinforced specimens besides the break of intertwining SiC grains.  相似文献   

8.
Ti(C,N)-based cermets were prepared by in situ carbothermal reduction in TiO2 and subsequent liquid phase sintering under vacuum. The prepared cermets were examined using XRD, SEM, TEM, and EDX. During solid-state sintering, fine TiC particles were formed through the carbothermal reduction in TiO2. A great number of (Ti,W,Mo)C complete solid solutions containing more W and Mo subsequently formed through the counter diffusion of the fine TiC and carbides. The majority of the coarse TiN particles in the raw powders remained undissolved. During liquid phase sintering, Ti-based carbonitride complex solid solutions with less W or Mo precipitated on the coarse TiN particles and fine (Ti,W,Mo)C particles, resulting in black core/gray rim structures and white core/gray rim structures, respectively. Moreover, small amounts of Ti-based carbonitride complex solid solutions precipitated directly from the liquid binder phase in some areas enriched in W and Mo during the cooling stage after sintering, resulting in coreless grains. Ultimately, after being sintered at 1400°C for 1 hour, the present cermets were characterized with white core/gray rim grains, black core/gray rim grains and a few gray grains. In addition, the interfaces between the black core/gray rim grains and binder phase were atomically smooth, exhibiting a orientation relationship with a perfect coherency state.  相似文献   

9.
通过液相磁力搅拌混合原料粉末,压片后无压烧结合成了三元Ti3SiC2,研究不同原料配比Ti/Si/C,Ti/SiC/C/和TiC/Si/Ti对合成Ti3SiC2的影响,同时为了比较,在相同条件下加入少量Al或Sn,研究其对Ti3SiC2的合成过程及最终产物的影响,并探讨Ti3SiC2的合成机理.结果表明:3Ti/1.2Si/2C/0.1Al在1400 ℃无压烧结合成了较高纯度的Ti3SiC2,Al粉的加入可以降低混合粉末的起始反应温度,有利于三元层状化合物Ti3SiC2的合成和纯度的提高,其合成机制为,在铝粉形成的熔池中,经形核钛和硅反应生成钛硅金属间化合物,钛与石墨反应生成碳化钛,随后扩散,长大,随着温度的升高,反应生成三元层状Ti3SiC2.而以TiC或SiC为Ti或Si源制备的Ti3SiC2含杂质较多,不适用于无压烧结合成Ti3SiC2.合成的Ti3SiC2在HF溶液中经200 ℃溶剂热反应后,产物主要为两种不同晶型的SiC和AlF3立方体,且随着反应时间的延长,AlF3的含量增加,结晶更完善.  相似文献   

10.
Grain boundaries in pure alumina powder compacts sintered at 1400°C are smoothly curved, indicating that they have atomically rough structures. When these specimens are heat-treated at temperatures between 900° and 1100°C, a small fraction of the grain boundaries develop either hill-and-valley or kinked shapes with flat segments. Some of these flat boundary segments lie on the {011[Twomacr]} plane of one of the grain pairs. These grain boundaries thus appear to become singular at these temperatures. When a corundum crystal with a basal surface is sintered in alumina powder at 1400°C, all grain boundaries formed between the corundum basal surface and small grains, as well as those between the small grains, are smoothly curved, indicating their rough structure. When heat-treated at 900°C for 3 days, about 30% of the grain boundaries between the corundum basal surface and the small grains develop kinks with flat boundary segments, and some of these flat segments lie on the basal plane of the corundum. When heat-treated again at 1400°C, all grain boundaries are curved, indicating that they become reversibly rough. These observations show that at least some of the grain boundaries in alumina undergo roughening-singular transitions at temperatures between 900° and 1100°C.  相似文献   

11.
Boehmite sol was prepared by hot water hydrolysis of aluminum iso-propoxide using nitric acid as the catalyst. Calcium nitrate to yield 0–20 vol% calcia was added to the boehmite sol. The boehmite with additives was calcined at 600°C for 3 h. The calcined powder was milled at 230 rpm for 6 h and particle size was measured using Laser particle size analyzer. The powder samples were calcined at 1600°C for 3 h and the formation of calcium hexaaluminate was discussed using phase diagram, transmission electron microscope, energy dispersive spectra, and X-ray diffraction spectra. The powder samples calcined at 600°C for 3 h were compacted into cylindrical pellets and sintered at temperatures ranging from 1400° to 1600°C for 6 h and the formation of hexaaluminate (platelike) grains were confirmed using Scanning electron microscope and optical microscopy.  相似文献   

12.
Three transition metals, Ni, Mo, and Ti, were reacted with SiCN at high temperatures, and the reaction products characterized by X-ray diffraction. It was concluded that TiN is the most suitable interconnect material for the measurement of the electrical conductivity of SiCN at temperatures up to 1400°C. The TiN interconnects were produced by an in situ process on H-shape specimens of SiCN, with an appropriate correction factor (which was obtained by finite-element analysis) for the four-point measurement of the electrical resistance. The process consisted of placing a small drop of a slurry constituted from liquid Ceraset™ (the precursor for SiCN) and Ti metal powder (50 wt%) on the contact point. The droplet was photo-cured and pyrolyzed. The TiN interconnect was generated during the pyrolysis. Finally, as an example, the measurement of the conductivity of a SiCNO sample up to 1300°C is reported. A more complete study of the relationship between the conductivity and the composition of SiCNO will be reported separately.  相似文献   

13.
Microstructural control in thin-layer multilayer ceramic capacitors (MLCCs) is one of the present-day challenges for maintaining an increase in capacitive volumetric efficiency. The present paper continues a series of investigations aimed at understanding and controlling the microstructural stability of ultrathin Ni electrodes in MLCCs. Here, a kinetic approach based on the control of sintering profiles is used. Ni–BaTiO3 MLCC chips (0805-type with 300 active layers) are nonisothermally sintered up to 900°–1300°C with different heating rates in the range from 200° to 3000°C/h. In general, the continuity of the Ni electrodes increases with heating rate. However, a strong nonlinear dependence of Ni electrode continuity on sintering temperature is observed. It is concluded that a low-melting interfacial liquid (Ni,Ba,Ti) alloy layer initiates at temperatures between 1000° and 1100°C when the Ni electrodes are under tension. This interfacial liquid phase accelerates a stress-induced diffusion and is the key cause of the severe electrode discontinuities during heating. At higher temperatures (above 1100°C), where compressive stresses are active, the interfacial liquid alloy layer facilitates some recovery of the Ni electrode microstructure. The formation of the interfacial liquid alloy layer can be kinetically controlled using fast-heating rates, which improves the Ni electrode continuity.  相似文献   

14.
An attempt was made to lower the ductile-to-brittle transition temperature (DBTT) of polycrystalline TiC and to prevent the premature intergranular fracture noted in stoichiometric Tic at high temperatures by producing four substoichiometric compositions chosen from the single-phase TiC phase field. Each desired composition was prepared by blending and vacuum hot-pressing the appropriate mixture of Ti powder and stoichiometric TiC powder. Each billet was characterized for density, hardness, lattice parameter, and microstructure. The actual bulk compositions were determined by averaging electron probe microanalysis data collected randomly from a polished section of each billet. Specimens cut from the billets were strength-tested in four-point bending from room temperature to 1400°C and in compression from room temperature to 1200°C. A qualitative determination of the material's ductility was obtained from a load vs deflection plot and by optical microscopy of polished surfaces after deformation. Both the hardness and strength dropped with decreasing C/Ti atom ratios. Billets produced at the lower C/Ti atom ratios showed a significant deviation from linearity of the load/ deflection curve at temperatures as low as 1200°C in bending, with little or no drop in strength, and as low as 600°C in compression.  相似文献   

15.
When Pb(Mg1/2Nb2/3)O3–35PbTiO3 (mol%) (PMN–35PT) is sintered at 1200°C after packing in PbZrO3 powder, the grains show normal growth with time invariant normalized grain size distributions. If 0.5 wt% MgO is added to PMN–35PT, abnormal grain growth occurs with the large abnormal grains developing nearly cubic shapes. The interfaces between grains and PbO-rich liquid at grain triple junctions are flat, indicating that they are singular. Many central segments of the liquid films and possibly grain boundaries between the abnormal grains and the small neighboring grains are also flat along the {100} planes of the abnormal grains. The abnormal grain growth in the MgO-doped specimens is likely to be caused by the presence of these singular interfaces. Most of the large abnormal grains do not contain any Σ=3 penetration twin boundaries unlike the previous observations in PbO-excess PMN–35PT.  相似文献   

16.
Using Al‐Si‐Ti‐C powder mixtures, TiC grains locally reinforced Al‐Si matrix composites were produced through self‐propagating high‐temperature synthesis and casting method. The formation of TiC could be ascribed to the dissolution–reaction–precipitation mechanism. The TiC grains were uniformly distributed in the locally reinforced regions of the Al‐Si matrix. With increasing Al‐Si content, the size of TiC grains decreased. No pores and cracks were present at the interface between the Al‐Si matrix and the reinforced regions. Wear resistance of the locally reinforced regions is significantly improved compared with that of the Al‐Si matrix.  相似文献   

17.
Fully dense silicon nitride (Si3N4) has been produced by hot isostatically pressing α-Si3N4 powder at 1740°C under 160 MPa, with 0.5 wt% Y2O3 and 0.5 wt% Al2O3 as sintering additives. The sintered material was composed of very fine (0.5 μm) and equiaxed grains, as required for superplasticity. Before deformation, a very small amount of intergranular glassy silicate-based film was detected by transmission electron microscopy at the two-grain and triple-point junctions. Compression tests with a strain value of up to }0.5 were conducted in nitrogen in the temperature range of 1600°–1700°C. The observation of a shear-thickening phenomenon and the presence of a transition from a mild to a strong strain hardening at 20 MPa were attributed to the occurrence of rigid contacts between the grains. The angular distribution of the observed strain whorls was used to evidence the increase of rigid contacts between the grains, under the local expulsion of the wetting liquid film, with increases in compressive stress.  相似文献   

18.
Reactive hot pressing of Ti and BN powder mixtures is used to produce dense TiN x –TiB2 composites. The effect of excess Ti along with a small addition, ∼1 wt% Ni, on the reaction and densification of the composite was investigated. A composite of ∼99.9% relative density (RD) was produced at 1200°C at 40 MPa for 30 min with 1 wt% Ni, whereas composites produced without Ni are porous and contain residual reactants. The microstructural studies on composite samples with excess Ti produced at short durations indicate the presence of a transient (Ni–Ti) phase from which Ti is finally removed to form substoichiometric TiN x . The hardness of the dense TiN x –TiB2 composite is ∼22 GPa. The densification mechanism in this system is contrasted with the role of nonstoichiometry in the Zr–B4C system.  相似文献   

19.
The sessile drop method has been used to determine the time dependence of the contact angle at 850°C in vacuo for Ag–28 wt% Cu, Ag–35 wt% Cu–1.5 wt% Ti, and Ag–27 wt% Cu–12 wt% In–2 wt% Ti on vitreous and devitrified fused quartz substrates. Nonwetting behavior (θ > 90°) was observed for Ag–28 wt% Cu on both substrates with no evident effect of time at temperature. The silica substrate structure, whether crystalline or amorphous, as well as its surface condition, whether smooth or rough, made no significant difference. In contrast, with Ag–35 wt% Cu–1.5 wt% Ti and Ag–27 wt% Cu–12 wt% In–2 wt% Ti the contact angle continuously decreased with time for both silica substrates, and the structure and surface condition of the substrates had a negligible effect in the case of Ag–27 wt% Cu–12 wt% In–2 wt% Ti, which produced essentially the same contact angles on both silica substrates at a given time of hold at 850°C. The contact angles produced by Ag–35 wt% Cu–1.5 wt% Ti on devitrified fused quartz were consistently higher than those produced on the vitreous substrates, with increasing holding time at 850°C. This is attributable to the presence of extensive cracks in the α-cristobalite layer at the surface of the devitrified substrates, which obstruct wetting and spreading. These results, when correlated with the wettability of preoxidized silicon carbide by the same alloys reported in previous work, could account for the adverse effect on wetting of the high-temperature silica films formed on the surface of the SiC in that work.  相似文献   

20.
The effect of abnormal grain growth on the formation of amorphous films at grains boundaries was studied in a model system BaTiO3. 0.4 mol% TiO2-excess BaTiO3 powder compacts were sintered at 1380°C for various times up to 16 h. During the sintering, abnormal grains formed. With the growth of the abnormal grains, amorphous films formed and eventually thickened up to 19.2 nm at grain boundaries. The film formation is attributed to the accumulation of Ti solutes at grain boundaries with the grain growth, while the film thickening is mostly caused by the redistribution of liquid at triple junctions. Extended annealing of the 16-h-sintered sample at 1350°C for 15 days resulted in a thinning of the film to nearly 1.7 nm without a change in the grain size, showing an equilibrium thickness. This result demonstrates that the film thickness observed during the growth of the grain may not be the equilibrium thickness. The result further suggests that the shape of the abnormal grains, even when equiaxed, can differ from the equilibrium shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号