首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杏鲍菇热风-微波真空联合干燥工艺参数优化   总被引:1,自引:0,他引:1  
利用不同组合的热风-微波真空联合干燥对杏鲍菇做单因素试验,并与热风干燥和微波真空干燥比较;以热风温度(X1)、转换含水率(X2)、微波功率(X3)为试验因素,色差(Y1)、复水比(Y2)、氨基酸(Y3)、能耗(Y4)为试验指标,采用Box-Behnken中心组合设计做优化试验;通过线性加权法,求出联合干燥的综合优化工艺。结果表明,联合干燥产品品质最好,色差和复水性比微波真空干燥好,氨基酸破坏小,能耗比热风干燥节省。优化试验结果是:微波功率和热风温度对色差和复水比影响极显著,在热风温度60~64℃,微波功率2~3 kW区间获得较好的复水比和色差;微波功率和转换含水率对产品氨基酸影响极显著,转换含水率47%~60%,微波功率1.7~3 kW,产品中氨基酸保持好;热风温度和转换含水率对能耗的影响极显著,热风干燥时间长,能耗高。高品质、低能耗的联合干燥工艺最佳参数组合是:热风温度73.55℃、转换含水率60%、微波功率2.65 kW。  相似文献   

2.
响应面法优化柠檬片微波真空干燥工艺   总被引:3,自引:0,他引:3  
以新鲜柠檬片为原料,通过单因素试验,研究了微波功率、真空度、柠檬片厚度对柠檬干片VC含量、可滴定酸含量、复水比、色差值的影响,采用Box3Behnken设计试验,选取微波功率、真空度、柠檬片厚度为自变量,以VC含量、可滴定酸含量、复水比、色差值为响应值,进行3因素3水平的旋转正交组合试验,分别建立了VC含量、可滴定酸含量、复水比,色差值的非线性回归数学模型;同时通过Design3Expert软件选取VC含量、可滴定酸含量、复水比取最大值,色差值取最小值得到了微波真空干燥柠檬片的优化工艺参数为微波功率1.01 k W、真空度72.4 k Pa、柠檬片厚度4 mm。  相似文献   

3.
《食品与发酵工业》2019,(18):155-161
为了提高稻谷机械干燥效率和干后品质,降低干燥能耗,以平均干燥速率r、爆腰率b和单位能耗e为指标,以热风温度(X_1)、热风风速(X_2)、转换点含水率(X_3)、真空温度(X_4)为试验因素,设计Box-Behnken Design(BBD)试验对稻谷热风-真空联合干燥工艺参数进行优化,并将优化结果与热风、真空单一干燥方式最优工艺参数对应的指标值相比较。结果表明,联合干燥的最优工艺参数为:X_1=40℃、X_2=0. 7 m/s、X_3=20. 7%、X_4=38. 1℃,对应的平均干燥速率为0. 000 483 g/(g·min)、爆腰率为6. 3%、单位能耗为2 612 kJ/kg。联合干燥的平均干燥速率比热风干燥降低了29. 5%,比真空干燥提高了33. 1%;爆腰率比热风干燥降低了10%,比真空干燥降低了13. 7%;单位能耗比热风干燥降低了60. 1%,比真空干燥降低了12. 6%,说明稻谷热风-真空联合干燥与单一干燥方式相比优势明显。  相似文献   

4.
蓝莓热风-微波真空联合干燥工艺研究   总被引:1,自引:0,他引:1  
采用单因素和一次回归正交试验,对蓝莓热风-微波真空联合干燥工艺进行优化建模,研究初始水分含量、微波温度、微波功率、真空度和微波干燥时间对产品水分含量、膨化率和单位能耗的影响。试验结果表明,最佳干燥工艺参数为:初始水分含量30%~40%,微波干燥温度80℃,微波功率1.5 k W,真空度-80 k Pa,微波干燥时间4 min。根据一次回归正交试验得出微波功率和微波干燥时间对产品最终水分含量影响显著(P0.05),微波功率、真空度和微波干燥时间3个因素对单位能耗均有显著影响(P0.05),而以上3个因素对膨化率的影响不显著;同时得到微波功率、真空度和微波干燥时间与产品最终水分含量、膨化率和单位能耗的回归方程。此回归方程为蓝莓热风-微波真空联合干燥工艺提供了理论参考。  相似文献   

5.
以单因素试验为基础,探讨微波功率、热风温度、转换点含水率对干姜片复水比、姜辣素含量的影响;以姜辣素含量为响应值进行响应曲面优化分析,结果表明:最佳优化工艺条件为微波功率590W、干燥转换点含水率34%、热风干燥温度63.5℃,在此条件下干姜姜辣素含量为2.61%,验证结果为2.59%,与理论预测值相对偏差为0.014;比单独微波真空干燥提高了17.19%,比单独热风干燥提高了7.47%;联合干燥能耗比单独热风干燥降低了71.60%,时间缩短了70.13%;复水比与热风干燥相比略有下降,比单独微波干燥提高了33.59%;微波联合热风干燥终点易控制,具有高效、节能、高品质的特点,适用于生姜脱水干燥生产。  相似文献   

6.
为保持微波真空干燥(MVD)柠檬片的色泽,优化了柠檬片护色液的成分及其浓度,并分析了其对柠檬片品质变化的影响.以蒸馏水处理组为空白对照组,通过单因素和响应面试验确定了无硫护色剂组成,为0.60%乙二胺四乙酸二钠(EDTA-2Na)、0.38%L-半胱氨酸和0.82%柠檬酸;所处理产品的L*值及色差值均最优,验证试验得出...  相似文献   

7.
雪莲果热风-微波联合干燥工艺优化   总被引:2,自引:0,他引:2  
以雪莲果为原料,研究样品厚度、热风温度、微波质量比功率对雪莲果热风和微波干燥特性的影响。以热风温度、转换点含水率、微波质量比功率为因素,以色泽变化(ΔE)、干燥时间(t)为指标,采用二次回归正交旋转组合试验设计确定雪莲果热风-微波联合干燥的最适工艺参数。结果表明:雪莲果热风干燥最适工艺参数组合为样品厚度2~4mm,热风温度70℃;雪莲果微波干燥最适工艺参数组合为样品厚度4mm,微波质量比功率2W/g。影响热风-微波联合干燥产品ΔE的主次顺序依次为微波质量比功率、热风温度、转换点含水率;影响干燥时间的主次顺序依次为转换点含水率、热风温度、微波质量比功率。雪莲果热风-微波联合干燥的最适工艺参数组合为热风温度68.1℃,转换点含水率61.0%,微波质量比功率2.6W/g。在此组合参数条件下,色泽变化ΔE=21.53,干燥时间t=172min,复水比RR=4.12,收缩率SR=84.35%。  相似文献   

8.
《食品与发酵工业》2019,(18):176-182
以鲜青花椒为原料,研究热风-微波联合干燥工艺对花椒品质及能耗的影响。通过单因素试验,以色差为观测指标,确定了热风温度、转化含水率及微波功率3因素的适宜作用范围。在此基础上,进行Box-Behnken中心组合试验,以色差、挥发油含量及单位能耗的综合评分为响应值进行响应面分析,对热风-微波联合干燥青花椒的工艺条件进行优化。结果表明,热风-微波联合干燥青花椒的最佳工艺条件为热风温度64. 56℃、转化含水率41. 59%、微波功率345. 20 W。此条件下,干燥的青花椒综合评分为0. 194 522。联合干燥验证试验结果与优化结果误差<4%,优化结果可靠。热风-微波联合干燥青花椒为提高干制花椒的品质和降低能耗具有重要意义,为青花椒的联合干燥研究提供了研究思路,研究结果为青花椒的热风-微波联合干燥的工业化应用提供了理论依据。  相似文献   

9.
玉米热风与微波联合干燥工艺优化研究   总被引:2,自引:0,他引:2  
对玉米进行热风与微波联合干燥实验研究,目的是缩短单独热风干燥玉米时间,节约能耗,同时利用微波干燥对环境无污染的优势。通过单因素试验和正交试验优化设计,得到玉米联合干燥的较佳工艺条件。结果表明联合干燥玉米的较佳工艺条件为:转换水分点为20%,微波功率为119 W,微波时间为8 min。此条件下干燥玉米,其裂纹率为0%,颜色和气味基本正常。  相似文献   

10.
真空微波与热风联合干燥蒜片的工艺研究   总被引:2,自引:0,他引:2  
运用正交实验对四种无硫护色液进行复合实验,最佳护色组合为:CaCl2浓度为0.6%、NaCl浓度为0.8%、L-半胱氨酸浓度为0.10%,经此复合护色液护色得到干燥蒜片L*值为86.23。比较了热风、真空微波、真空微波与热风联合干燥三种生产工艺所得蒜片干制产品的品质,采用正交实验优化了热风与真空微波联合干燥蒜片的生产工艺。结果表明:前期采用真空度-90kPa,微波功率375W,微波干燥20min,后期60℃热风干燥60min,干燥总时间为80min,缩短了热风干燥时间,得到了高品质的蒜片产品。  相似文献   

11.
运用正交实验对四种无硫护色液进行复合实验,最佳护色组合为:CaCl2浓度为0.6%、NaCl浓度为0.8%、L-半胱氨酸浓度为0.10%,经此复合护色液护色得到干燥蒜片L*值为86.23。比较了热风、真空微波、真空微波与热风联合干燥三种生产工艺所得蒜片干制产品的品质,采用正交实验优化了热风与真空微波联合干燥蒜片的生产工艺。结果表明:前期采用真空度-90kPa,微波功率375W,微波干燥20min,后期60℃热风干燥60min,干燥总时间为80min,缩短了热风干燥时间,得到了高品质的蒜片产品。   相似文献   

12.
以鸭胸肉为对象,优化真空微波膨化鸭胸肉的最佳工艺条件。采用单因素试验考察膨化前水分含量、微波强度、微波时间和真空度对膨化鸭胸肉体积收缩率、复水比、感官评分的影响,利用响应面试验优化热风联合真空微波膨化鸭胸肉的工艺条件。结果表明:膨化前水分含量、微波强度、微波时间和真空度对膨化鸭胸肉的品质均有一定影响。在固定真空度为0.08 MPa条件下,各因素对膨化鸭胸肉体积收缩率和感官评分的影响程度大小顺序均为微波强度微波时间膨化前水分含量,通过等高线叠加法确定最佳膨化鸭胸肉加工工艺参数范围:膨化前水分含量为59%~63%,微波强度为20.5~24.7 W/g,微波时间为6.1~6.6 min。在此条件下,膨化鸭胸肉的体积收缩率可低于34%,感官评分在4.75以上,研究结果可为鸭肉膨化食品工业化生产提供理论参考。  相似文献   

13.
热风微波干燥龙眼肉工艺的优化   总被引:3,自引:1,他引:3  
针对龙眼肉原料受热不均匀和微波干燥速率过快与局部过焦的问题,尝试在干燥前将原料均匀涂抹经过适度加热的玉米调和油,然后再进行热风微波干燥,旨在通过降低微波干燥的加热速度来提高龙眼肉的生产效率和产品品质。文中建立了具体的感官评价体系,从功率密度、加热方式、初始含水率3个方面分析添加油脂膜的龙眼肉在微波干燥过程中的颜色变化、干燥速率变化、感官评价变化。实验找到了经油脂涂膜处理的龙眼肉在热风微波干燥工艺的优化点:4W/g功率、微波10s间歇40s、初水分含量50%~60%、食用油脂含2%~4%。与未使用任何预处理的热风微波干燥龙眼肉相比较,该工艺可以得到更加良好的品质,且保质期在6m。  相似文献   

14.
以新鲜紫薯为原料,研究其热风干燥工艺参数通过单因素实验,研究了铺料密度、热风温度、热风风速对紫薯热风干燥特性的影响,得出紫薯热风干燥过程的失水规律;分析了紫薯热风干燥主要工艺参数(热风温度、铺料密度、热风速度)对干燥时间、耗能、色差及其重要营养成分含量的影响结果表明,热风温度、物料铺料密度对干燥速率有较大影响,热风风速对干燥速率有一定影响,得到的优化工艺参数为:热风温度90℃,铺料密度为0.1592g/cm2,热风风速为0.6m/s,在此条件下,综合指标为19.5678.  相似文献   

15.
《食品工业科技》2013,(07):265-268
以新鲜紫薯为原料,研究其热风干燥工艺参数。通过单因素实验,研究了铺料密度、热风温度、热风风速对紫薯热风干燥特性的影响,得出紫薯热风干燥过程的失水规律;分析了紫薯热风干燥主要工艺参数(热风温度、铺料密度、热风速度)对干燥时间、耗能、色差及其重要营养成分含量的影响。结果表明,热风温度、物料铺料密度对干燥速率有较大影响,热风风速对干燥速率有一定影响,得到的优化工艺参数为:热风温度90℃,铺料密度为0.1592g/cm~2,热风风速为0.6m/s,在此条件下,综合指标为19.5678。   相似文献   

16.
对甘蓝进行热风和微波真空联合干燥试验,目的是缩短热风干燥时间,提高产品质量.结果表明:联合干燥缩短了干燥时间约48.33%,提高了产品的营养成分保存率、叶绿素保存率;微波真空干燥使产品质构疏松.  相似文献   

17.
《食品与发酵工业》2016,(11):138-141
以香蕉片为原材料,对比热风和微波真空干燥的特点,提出两者联合干燥工艺。并通过正交试验优化出最佳联合工艺参数为:热风温度60℃、热风时间25 min、微波强度4 W/g、真空度85 k Pa、微波干燥时间15min。这种联合干燥工艺明显地减小了传统热风干燥所用的时间,以及微波真空干燥装置的负荷,从而提高整个工艺的干燥速率和最终的香蕉片质量。  相似文献   

18.
为优化微波-热风联合干燥大蒜粒的最佳工艺参数,以大蒜粒为试材,以干燥速率、大蒜素含量、感官评分、白度、复水比和综合得分为指标,比较研究不同微波功率密度、不同热风温度对大蒜粒干燥特性和品质的影响,并以微波功率密度、转换点干基水分含量、热风温度为试验因素,设计L9(33)正交试验对微波-热风联合干燥大蒜粒的工艺条件进行优化。结果表明,9. 2 W/g微波干燥和70℃热风干燥所得大蒜粒干品的综合得分最高,分别为94. 698、96. 566。微波功率密度对联合干燥大蒜粒的综合得分影响极显著(p 0. 01);转换点干基水分含量和热风干燥温度对综合得分无显著影响(p 0. 05)。微波-热风联合干燥大蒜粒的最佳工艺条件为先期采用功率密度9. 2 W/g微波干燥至转换点(干基水分含量1. 200 g/g),后期用热风60℃干燥至干基含水量0. 100g/g;在此条件下,联合干燥所得大蒜粒的大蒜素、复水比、白度、感官评分分别为0. 956 mg/g、2. 699、83. 130、83. 000,干品综合得分为125. 281。因此,微波-热风联合干燥是适合大蒜粒干燥的较好技术方法。  相似文献   

19.
为了探索糖姜片的快速干燥方法,应用微波与热风联合干燥方式对糖姜片进行了工艺研究。首先分别考察了微波功率、转换点含水率、热风温度等因素对糖姜片中姜辣素含量的影响。然后采用3因素3水平的响应面设计并优化了微波与热风联合干燥工艺条件,并建立了相应的回归方程。结果表明,最佳联合干燥工艺条件为:前期微波功率239 W,转换点含水率65%,后期热风温度61℃。在此条件下,糖姜片的姜辣素含量为(0.73±0.025)%,实际测定值与理论预测值的相对误差为-2.67%,二者基本吻合。与单独热风干燥、微波干燥相比,微波与热风联合干燥糖姜片的姜辣素含量分别提高了30%、14%。为生姜制品的深加工研究和开发提供科学参考。  相似文献   

20.
为了探索生姜片的快速干燥方法,应用先热风后微波的联合干燥方式对生姜片进行了工艺研究。首先分别考察了姜片厚度、热风温度、转换点含水率、微波功率对姜辣素含量的影响;然后采用三因素三水平的响应面设计优化热风与微波联合干燥工艺,并建立了描述联合干燥过程的回归方程。结果表明:最佳联合干燥工艺条件为姜片厚度4mm,热风温度67℃,转换点含水率36%,微波功率119 W。在此条件下,脱水姜片的姜辣素含量为(2.04±0.031)%,实际测定值与理论预测值的相对误差为-0.97%。与单独热风干燥、单独微波干燥相比,联合干燥的生姜片中姜辣素含量分别提高了32%和13%。与单独热风干燥相比,热风与微波联合干燥、单独微波干燥的干燥时间分别缩短了55.75%和62.01%,总能耗分别降低了59.76%和98.04%,这些研究结果为生姜的脱水加工提供科学参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号