共查询到17条相似文献,搜索用时 78 毫秒
1.
水是人类和其它生命体所依赖的不可缺少的资源,建立水质预测模型预测水质状况具有重要的社会经济和生态环保价值.本文建立了基于小波分解的长短期记忆网络(LSTM)时间序列预测模型(W-LSTM),运用Daubechies5 (db5)小波将水质数据分解为高频率和低频率信号,再将这些信号作为LSTM模型的输入,来训练模型预测水质数据.利用安徽阜南王家坝流域采集到的4项水质指标(pH值、DO、CODMn、NH3N)对该模型进行训练、验证和测试,并与传统LSTM神经网络模型的训练和预测结果进行比较.结果显示所提出的方法在多种评价指标上均优于传统LSTM模型,表明了该方法具有较高的预测精度和泛化能力,是一种更有效的模拟预测手段. 相似文献
2.
潘颖辉 《电脑编程技巧与维护》2016,(13)
受外界条件等因素的影响,采集到的声音信号中不可避免存在着大量的突变信号,因此需要对其进行降噪处理.传统的傅里叶分析不能同时分析信号在时域和频域的全貌和局部化特征,而这些局部化信息恰恰是表征声音信号的关键特质.小波变换在突变信号分析中得到广泛的应用,在声音去噪应用中取得了良好的效果,比较了小波分析和小波包分析两种去噪方法. 相似文献
3.
加油时序数据包含加油行为的多维信息,但是指定加油站点数据较为稀疏,现有成熟的数据异常检测算法存在挖掘较多假性异常点以及遗漏较多真实异常点的缺陷,并不适用于挖掘加油站时序数据。提出一种基于深度学习的异常检测方法识别加油异常车辆,首先通过自动编码器对加油站点采集到的相关数据进行特征提取,然后采用嵌入双向长短期记忆(Bi-LSTM)的Seq2Seq模型对加油行为进行预测,最后通过比较预测值和原始值来定义异常点的阈值。通过在加油数据集以及信用卡欺诈数据集上的实验验证了该方法的有效性,并且相对于现有方法在加油数据集上均方根误差(RMSE)降低了21.1%,在信用卡欺诈数据集上检测异常的准确率提高了1.4%。因此,提出的模型可以有效应用于加油行为异常的车辆检测,从而提高加油站的管理和运营效率。 相似文献
4.
近年来,随着以数据为中心的应用的大量增加,图数据模型逐渐被人们所关注,图数据库的发展也非常迅速,对于用户而言,用户往往更关心其在使用数据库过程中的效率问题.本文主要研究如何利用已有的信息进行图数据库的查询预测,从而进行数据的预加载与缓存,提高系统的响应效率.为了使得方法具有跨数据移植性,并深入挖掘数据间的联系,本研究将SparQL查询提取为序列的形式,使用Seq2Seq模型对其进行数据分析和预测,并使用真实的数据集对方法进行测试,实验表明本文的方案具有良好的效果. 相似文献
5.
为了克服GRACE数据低空间分辨率的局限,采用序列到序列(Seq2Seq)模型,对三种输入时间序列(地表温度、归一化植被指数和降雨)与GRACE时间序列的经验关系进行建模,将美国加利福尼亚州的GRACE数据空间分辨率由1°降尺度到0.1°。结果表明,Seq2Seq模型能获取到较为准确的时序特征与映射关系,通过遗传算法选出最佳超参数后的Seq2Seq模型,纳什系数可达0.97,均方根误差仅为0.23。通过实测地下水的验证可知,降尺度的GRACE数据与实测值有较强的相关性,相关系数最高可达0.85,能较为准确地反映地下水储量的变化。 相似文献
6.
港口进出口货物吞吐量是反映港口业务状况的重要指标,其准确预测将给港口经营管理人员进行决策提供重要的依据.利用机器翻译领域的Seq2Seq模型,对影响港口进出货物量的多种因素进行建模.Seq2Seq模型可以反映进出口货物量在时间维度上的变化规律,并且可以刻画天气、节假日等外部因素的影响,从而进行精准预测.Seq2Seq模型包含两个由循环神经网络(LSTM)组成的编码器和解码器,能够捕捉长短期时间范围内集装箱变化趋势,可以根据历史进出口货物量预测未来一段时间的货物量信息.在真实的天津港进出口集装箱数据集上进行了实验,结果表明Seq2Seq模型的深度学习预测方法效果优于传统的时间序列模型以及其他现有的机器学习预测模型. 相似文献
7.
8.
基于PCA的图像小波去噪方法 总被引:9,自引:0,他引:9
目前使用的各种小波去噪方法基本上都是建立在对噪声方差精确估计的基础上,而对噪声方差的精确估计是很困难的.提出了一种采用主分量分析(PCA)提取小波系数的主要特征,通过对小波域中噪声能量的估计来实现去噪的新方法.首先利用PCA对小波高频子带进行局部特征提取;然后以主分量对小波系数进行重建的平均能量作为局部噪声能量的估计;将原小波系数的能量减去噪声能量,就得到去噪后的小波系数;最后用小波逆变换对剔除噪声分量后的小波系数进行恢复得到去噪后的图像.本文算法无需对噪声方差进行估计,因而更具实用价值.本文算法与“软阈值”、“硬阈值”去噪方法相比,峰值信噪比(PNNR)提高了2~8dB.实验证实了本文算法良好的去噪性能。 相似文献
9.
刘晓娟 《自动化与仪器仪表》2023,(4):201-205
针对传统英语翻译的语法纠错系统存在英语语法错误检测准确率低,纠正效果不佳的问题,提出一种基于Seq2Seq神经网络的英语翻译语法纠错模型。首先,采用Seq2Seq神经网络中的Encode部分对输入序列进行建模,并输出此序列的语义向量;然后在Decode部分引入Attention机制,实现原始序列到目标序列的直接映射,从而完成英语语法纠错。实验结果表明,在CoNLL2018数据集的英语语法纠错测试结果中,本模型的准确率、召回率和F0.5值分别为35.44%、40.68%和32.56%,均高于传统CAMB语法纠错模型。在英语冠词错误纠正结果中,本方法的F0.5取值为32.36%,比传统UIUC方法和Corpus GEC方法高出了7.02%和2.76%;介词错误纠错实验中,本方法比另外两种方法高出了5.91%和13.15%。综合分析可知,本模型对英语翻译语法纠错准确率和精度更高,对比于传统的语法纠错模型纠错效果更好,可在英语翻译机器人语法纠错系统中进行广泛应用和推广。 相似文献
10.
11.
12.
水文时间序列受降雨量的影响,在变化规律上呈现季节性、非线性的特点.传统单一模型结构简单,对于复杂的非线性水文时间序列具有预测精度较低、不能很好捕捉水文时间序列的复合特征的问题.组合预测模型采用多分类器的思想,能够有效地提高预测准确度,然而在模型参数选择方面需要手工调参,花费时间多且不准确.本文提出一种基于SFLA-CN... 相似文献
13.
机电设备的寿命预测是状态维修中的一项重要任务.剩余使用寿命(RUL)预测不仅可以有效地防止机械装备发生突发性故障,而且可以最大限度地利用装备的工作能力、减少维修成本.为了更好地预测多工况条件下的设备RUL,提出一种基于卷积神经网络(CNN)联合长短时记忆(LSTM)网络的寿命预测模型.通过变窗口取样获得不同长度的时间序列,基于深度学习方法来发现传感器时序信号与RUL之间的隐藏关系,在训练过程中引入带有热重启的随机梯度下降(SGDR)学习率设定策略,通过感官融合层将子网络的输出特征融合并导入到逻辑回归分类器获得RUL.最后,基于发动机退化仿真数据集进行了有效性验证,表明所提方法在预测精度方面具有明显优势. 相似文献
14.
15.
随着社会经济的蓬勃发展,地铁、隧道、桥梁等大型建筑的需求也越来越大.通过对结构变形数据的分析与预测,可以判断结构未来的发展趋势,对安全隐患提前预警和采取应急措施,预防灾害的发生.由于变形监测数据通常具有不稳定性和非线性的特点,使得监测数据预测成为结构监测研究中的一个难题.针对结构变形预测模型存在的问题,本文提出了一种基于正交参数优化的长短时记忆网络(LSTM)结构变形预测模型.该模型通过LSTM网络结构获得时间序列的长期记忆,充分挖掘变形数据的内部时间特征;并通过正交试验对LSTM模型的参数进行优化;最后通过实测数据对模型进行验证,实验结果表明,模型预测值与实际监测值吻合较好.通过与WNN、DBN-SVR和GRU模型相比,平均RMSE、MAE和MAPE分别降低了56.01%、52.94%和52.78%,本文提出的基于正交参数优化的LSTM结构变形预测模型是一种有效的结构沉降方法,为结构安全施工以及运营的安全提供可靠信息,对确保结构安全具有重要意义. 相似文献
16.
为提升服务质量,数据中心需要确保在规定的截止时间前完成用户作业,因此必须根据实时的系统资源对作业进行有效的调度。提出了一种作业调度算法,根据预测的作业执行时间进行批作业调度,以最小化批作业的完成时间。作业执行时间预测模型基于长短期记忆LSTM网络,根据用户作业类型、作业量、作业需要的CPU核数和内存数量,以及作业需要的资源在系统总资源中的占比,对用户作业的执行时间进行预测。预测结果用于判断集群是否有能力按时完成用户作业,同时为合理安排各作业的执行顺序提供依据。通过实验确定了影响LSTM时间预测模型性能的各超参数取值,如迭代次数、学习率和网络层数等。实验表明,与SVR模型、ARIMA模型和BP模型相比,基于LSTM的作业执行时间预测模型的决定系数R2分别有2.97%,2.34%和5.66%的提升效果,且预测的平均误差仅为0.78%。 相似文献
17.
疏浚管道输送系统是绞吸挖泥船的重要组成部分,在施工过程中对流速的控制至关重要。该文以现有疏浚管道输送实验台为对象,提出了一种疏浚管道输送系统的流速预测模型。首先针对反向传播神经网络(BP)无法处理序列间的关联信息以及传统循环神经网络(RNN)无法记忆久远关键信息的缺陷,提出了基于长短期记忆循环神经网络(LSTM)的流速预测模型;然后使用LSTM模型对疏浚管道输送实验台和绞吸挖泥船的数据集进行网络训练,并对管道流速进行预测。通过将流速的预测值与真实值进行对比,验证了该文提出的LSTM模型具有很强的适用性和很高的准确性。 相似文献