共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
近些年来,计算机技术迅猛发展带动信息技术的兴起,数据挖掘技术被广泛地应用到各个领域当中。这个新兴的领域为数据挖掘技术提供了最为活跃的算法,即关联规则算法,其能够对于大量的数据和信息进行处理,通过将繁琐的项集从数据库中找出来,经过整理之后,将项集之间的关联关系建立起来,从中挖掘出有价值的数据信息,以在一定程度上满足不同领域的需要。本文针对数据挖掘中关联规则算法进行研究。 相似文献
3.
基于关联规则的数据挖掘技术的快速算法 总被引:11,自引:1,他引:11
提出了一种改进的Apriori算法的数据挖掘模式,探讨了对其中的生成候选频繁项目集、生成强关联规则等几个关健步骤运用标准SQL语言的算法实现。 相似文献
4.
曾孝文 《数字社区&智能家居》2005,(12):4-5,8
论文首先简要地介绍关联规则的概念、基本原理及分类。然后详细地讨论了Apriori算法的基本原理,同时也指出了Apriori算法的一些缺陷。针对这些缺陷提出了解决方法,列举了几种改进算法。最后概述了关联规则数据挖掘的发展趋势。 相似文献
5.
李文哲 《计算机光盘软件与应用》2012,(5):196+195
数据挖掘技术是自数据库产生以来,人工智能参与到人类社会活动中起到关键性作用的一种手段,可用于做市场分析、支持决策、经济发展预测等,引起了包括工商界在内的多个学术界的关注。本文所研究的关联算法依赖于Apriori算法,其关键思路是重复性扫描数据库中的事务,与此同时这种算法最显而易见的缺点是耗费时间长,关联规则的更新效率低,本文旨在原算法基础上使用已存在的关联规则对挖掘结果实行更新,达到提高效率的目的。 相似文献
6.
文章主要论述了数据挖掘的概念、过程及应用前景,此外还重点介绍了数据挖掘中常用的一种算法-关联规则算法. 相似文献
7.
8.
目前,人们已经提出了许多挖掘关联规则的算法及其变型,其中最著名的是Apriori算法,但传统的算法效率太低。为了解决这些问题,本文提出了一种快速更新的关联挖掘算法。 相似文献
9.
数据挖掘中常用关联规则挖掘算法 总被引:3,自引:3,他引:3
文中首先介绍了数据挖掘中关联规则的经典算法--Apiori算法.再从宽度、深度、划分、采样、增量式更新等几个角度对关联规则挖掘进行了分类讨论.然后运用文献查询和比较分析的方法对常见的关联规则挖掘算法进行了概述,主要包括FP-growth算法、DHP算法、Partition算法、FUP算法、CD算法等算法.最后对关联规则挖掘的发展远景进行了展望. 相似文献
10.
Apriori算法是关联规则挖掘中的经典算法。通过对Apriori算法的基本思想和性能的研究分析,提出了一种基于垂直事务列表的树形结构的挖掘算法,减少了候选频繁项集的数量,提高了挖掘算法的效率。实验结果表明新算法具有良好的性能。 相似文献
11.
12.
13.
关联规则数据挖掘与发展趋势研究 总被引:1,自引:0,他引:1
曾孝文 《数字社区&智能家居》2005,(35)
论文首先简要地介绍关联规则的概念、基本原理及分类。然后详细地讨论了Apriori算法的基本原理,同时也指出了Apriori算法的一些缺陷。针对这些缺陷提出了解决方法,列举了几种改进算法。最后概述了关联规则数据挖掘的发展趋势。 相似文献
14.
关联规则数据挖掘方法的研究 总被引:3,自引:0,他引:3
首先简要地介绍数据挖掘和关联规则的概念、关联规则的基本原理及种类。然后详细地介绍了关联规则挖掘研究现状,讨论了Apriori算法的基本原理,同时也指出了Apfiofi算法的一些不足。针对这些不足提出了解决方法,描述了几种改进算法。最后对关联规则挖掘下一步的研究方向进行了展望。 相似文献
15.
程红霞 《数字社区&智能家居》2007,1(3):593
首先介绍了关联规则的基本概念,然后详细地介绍了Apriori算法,同时也指出了Apriori算法的一些不足。针对这些不足提出了解决方法,描述了几种优化算法。最后对关联规则研究范围进行了拓展。 相似文献
16.
数据挖掘中关联规则挖掘算法比较研究 总被引:15,自引:12,他引:15
分析数据挖掘中关联规则挖掘算法的研究现状,提出关联规则新的价值衡量方法和关联规则挖掘今后进一步的研究方向。以核心Apfiofi算法为基点,运用文献查询和比较分析方法对典型的关联规则挖掘算法进行了综合研究:Apfiofi法即使进行了优化,一些固有的缺陷仍然无法克服,还需进一步研究;②今后的研究方向将是提高处理极大量数据和非结构化数据算法的效率、与OLAP相结合以及生成结果的可视化。 相似文献
17.
关联规则作为数据挖掘的一个重要研究分支,其主要的研究目的是从大型数据集中发现隐藏的、有趣的、属性间存在的规律。本文就数据挖掘中的关联规则做了简要论述。 相似文献
18.
随着时代的进步和科学技术的发展,数据资源越来越多,但是信息贫乏的困境却依然无法摆脱,于是如今开始大力对新的数据分析方法和工具进行查找,从海量数据中将有用知识给提取出来。针对如今Apriori算法效率的瓶颈,就需要提出策略来改进本算法。本文简要分析了基于数据挖掘关联规则Apriori算法的优化对策,希望可以提供一些有价值的参考意见。 相似文献
19.
20.
王焱林 《计算机光盘软件与应用》2014,(18):126+128
随着计算机技术和信息技术的飞速发展,数据挖掘已经成为当今各行各业重点关注的对象。关联规则挖掘是数据挖掘中的一个非常重要的内容,通过关联规则挖掘能够从海量数据中分析出数据与数据之间存在的关系,进而为用户提供更具有参考价值的信息。现阶段关联规则挖掘已经广泛应用于保险、股市、网络数据等多个对市场信息高度依靠的行业。本文从关联规则挖掘相关概念出发,对其主要操作步骤进行了简单分析,并研究了数据分割下的挖掘问题及算法。 相似文献