首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Lachenmaier  J.  Dobiasch  A.  Meyer-Pittroff  R. 《Topics in Catalysis》2001,16(1-4):437-442
Since the beginning of combustion engine development in this recent century various different fuels have been successfully tested. Diesel engines have been adapted to fuels made from mineral oils because of the rising importance and the cheapness in comparison to other fuels. On the other hand, it is possible to burn regenerative fuels in engines and achieve some significant advantages in comparison to fossil diesel fuel. This is, for example, a closed carbon dioxide (CO2) cycle which causes no green house effect. It is possible to extract oil from various seeds like rapeseed. It is also possible to burn used oil from the food processing industry or waste grease and oil from food recycling companies. The great advantages: (1) food recycling oils can produce energy instead of use as animal food, and (2) as nobody knows exactly the consistency of the collected oils, poisonous pollution is possible. These regenerative fuels can be burned without any further processing in special adapted diesel engines, for example an Elsbett engine, or in precombustion engines with large swept volumes. Most researchers focused on operating diesel engines with regenerative fuels and reducing the emissions caring only about regulated exhaust components. In comparison to these studies it is necessary to learn more about the emissions beyond the exhaust regulations. Additionally emission reduction is possible by using an SCR-catalyst (selective catalytic reduction) to reduce the NO2 combined with an oxidation-catalyst which reduces any kind of oxidisable emissions. The TU München, Lehrstuhl für Energie- und Umwelttechnik der Lebensmittelindustrie, operates a small co-generation plant with the ability of analysing the standard emission components (CO, NO2, HC, particles, CO2, O2) and unregulated components (SO2, NH3, polycyclic aromatic hydrocarbons (PAH), aldehyde, ketone). The emissions show some significant differences in comparison to fossil diesel fuel which is caused by the diversity of each fuel. Results of an investigation on four different fuels (wastefat methyl ester (WME), rapeseed methyl ester (RME), rapeseed oil and diesel fuel) burned in a small co-generation plant with a SCR- and oxidation-catalyst will be presented. A comparison to the emissions before and after the catalysts will be shown additionally to the results of the different reduction potential of diesel fuel, methyl ester or untreated oils. The combination of regenerative fuel and catalyst shows good potential for reducing the emissions. Furthermore the use of regenerative fuels is a sustainable production of energy with an overall efficiency of almost 90%. Regenerative fuels based on vegetable oils and waste fat are a valuable form of energy and have some significant advantages in comparison to diesel fuel, like an almost closed carbon dioxide cycle, rapid biological decomposition and lower CO, HC and particle emissions. Regenerative fuels should also meet minimum standards discussed in the paper to avoid the risk of engine damage and to reduce emissions.  相似文献   

2.
Waste anchovy fish oils transesterification was studied with the purpose of achieving the conditions for biodiesel usage in a single cylinder, direct injection compression ignition. With this purpose, the pure biodiesel produced from anchovy fish oil, biodiesel-diesel fuel blends of 25%:75% biodiesel-diesel (B25), 50%:50% biodiesel-diesel (B50), 75%:25% biodiesel-diesel (B75) and petroleum diesel fuels were used in the engine to specify how the engine performance and exhaust emission parameters changed. The fuel properties of test fuels were analyzed. Tests were performed at full load engine operation with variable speeds of 1000, 1500, 2000 and 2500 rpm engine speeds. As results of investigations on comparison of fuels with each other, there has been a decrease with 4.14% in fish oil methyl ester (FOME) and its blends' engine torque, averagely 5.16% reduction in engine power, while 4.96% increase in specific fuel consumption have been observed. On one hand there has been average reduction as 4.576%, 21.3%, 33.42% in CO2, CO, HC, respectively; on the other hand, there has been increase as 9.63%, 29.37% and 7.54% in O2, NOx and exhaust gas temperature has been observed. It was also found that biodiesel from anchovy fish oil contains 37.93 wt.% saturated fatty acids which helps to improve cetane number and lower NOx emissions. Besides, for biodiesel and its blends, average smoke opacity was reduces about 16% in comparison to D2. It can be concluded that waste anchovy fish obtained from biodiesel can be used as a substitute for petroleum diesel in diesel engines.  相似文献   

3.
《分离科学与技术》2012,47(4):626-633
An Advanced Heavy Water Reactor (AHWR) has been specifically designed to exploit Th/233U as fuels. The reprocessing is focused mainly on the recovery of 233U and Pu from the spent fuels leaving bulk of Th (~100 g/L) in the High Level Waste (HLW) solutions. No systematic attempts have been made so far to identify suitable solvents for the recovery of thorium from high level waste (HLW) solutions generated after AHWR spent fuel reprocessing. Tri-n-butyl phosphate (TBP), though the work horse for nuclear fuel reprocessing as an extractant, suffers from the serious limitation of third-phase formation during the extraction of macro concentrations of thorium. Two straight chain dialkyl amides such as N,N-dihexyl octanamide (DHOA), and N,N-dihexyl decanamide (DHDA) as well as TBP were evaluated for the recovery of the thorium from AHWR-HLW solutions. Attempts were made to identify suitable solvent (extractant + diluent) system and optimize the conditions for the recovery of thorium from HLW solutions. Selectivity of the solvents was examined for thorium extraction over fission products/structural materials under AHWR raffinate solutions. Counter-current centrifugal contactor runs were also carried out on simulated waste solutions to validate the optimized conditions for the recovery of thorium from the simulated AHWR waste solutions.  相似文献   

4.
Vegetable oils have been considered as an alternative to diesel fuel due to their comparable properties and performance. However, the high viscosity of vegetable oil causes engine durability problems with long-term usage. Vegetable oil viscosity can be reduced by blending with diesel fuel in thermodynamically stable mixtures using microemulsion fuel formulation techniques. This work focuses on the formulation of microemulsion fuels comprising diesel fuel and canola oil as the oil phase with ethanol and sec-butanol as viscosity reducers as well as 1-octanol and oleyl amine as surfactant/cosurfactant. Selective tests on an instrumented diesel engine were performed for formulated microemulsion fuels and No. 2 diesel fuel for comparison. The results show that formulated microemulsion fuels have fuel properties that meet the ASTM requirements for viscosity, cloud point, and pour point for biodiesel. Even more important, they have phase stability over a wide range of temperatures (−10 to 70 °C). Although all of the microemulsion fuels showed higher fuel consumption than diesel fuel, some of the microemulsion fuels had significantly reduced CO and NOx emissions as well as reduced particulates when compared to baseline diesel fuel. The research demonstrates the potential of these microemulsion fuels as alternative to neat diesel fuel.  相似文献   

5.
The rapid decline in fossil fuel reserves in the world, rising oil prices, and growing concerns about the increase in pollutant gas emissions from this type of energy, have led to the exploration of new energy sources for the production of alternative fuels. The use of vegetable oils as a low‐cost raw material for biodiesel production is an effective way to reduce biodiesel costs. This paper reports on the production and biodiesel properties of the seed oils of six native species belonging to different families of plants from the Atlantic Forest in northeast Brazil. The results are compared with those obtained from traditional crops such as soybean and olive. The relative oil content of the seeds ranged from 31.5 to 67.4 %, while the biodiesel yield from these oils ranged from 93.2 to 97.6 wt%. The fatty acid composition is mainly constituted of oleic acid in three species (Cissampelos andromorpha, Rauwolfia grandiflora, and Tabernaemontana flavicans), eicosenoic acid in two species (Serjania caracasana and Serjania salzmanniana) and palmitic acid in Protium heptaphyllum. The physicochemical parameters of oil (density, viscosity, % FFA, and % of linolenic acid) and biodiesel (density, viscosity, acid number, copper strip corrosion, flash point, sulfur content, sulfated ash, water, oxidative stability, free and total glycerin) were in agreement with ASTM 6751 and EN 14214 standards. The fatty acid composition, biodiesel yield, oil, and biodiesel properties of the six native species studied demonstrate the high potential for producing alternative fuel in conventional diesel engines.  相似文献   

6.
The objective of this research was to determine the oxidative stability of fish oil blended with crude plant oils rich in naturally occurring antioxidants, camelina oil and oat oil, respectively, in bulk and after supplementation of 1 wt% of oil blends to skimmed milk emulsions. Ability of crude oat oil and camelina oil to protect fish oil in bulk and as fish oil-enriched skimmed milk emulsions was evaluated. Results of oxidative stability of bulk oils and blends assessed by the Schaal oven weight gain test and by the rancimat method showed significant increase in oxidative stability when oat oil was added to fish oil in only 5 and 10 %, whereas no protective effect of camelina oil was observed when evaluated by these methods. Moreover, fish oil blended with oat oil conferred the lowest PV and lower amounts of volatile compounds during the storage period of 14 days at 4 °C. Surprisingly, skimmed milk supplemented with fish-oat oil blend gave the highest scores for off-flavors in the sensory evaluation, demonstrating that several methods, including sensory analysis, should be combined to illustrate the complete picture of lipid oxidation in emulsions.  相似文献   

7.
Biodiesel is recognized as a clean alternative fuel or as a fuel additive to reduce pollutant emissions from combustion equipment. Because cultivated land is too limited to grow seed-oil plants sufficient to produce both food and biodiesel, non-land-based oleaginous materials have been considered important sources for the production of the latter. In this study, the discarded parts of mixed marine fish species were used as the raw material to produce biodiesel. Marine fish oil was extracted from the discarded parts of mixed marine fish and refined through a series of pretreatment processes. The refined marine fish oil was then transesterified with methyl alcohol to produce biodiesel, which was used thereafter as engine fuel to investigate its engine performance and emission characteristics. The experimental results show that, compared with commercial biodiesel from waste cooking oil, marine fish-oil biodiesel has a larger gross heating value, elemental carbon and hydrogen content, cetane index, exhaust gas temperature, brake fuel conversion efficiency, NOx and O2 emissions, and black smoke opacity and a lower elemental oxygen content, fuel consumption rate, brake-specific fuel consumption rate, equivalence ratio, and CO emission. Compared with ASTM No. 2D diesel, both marine fish-oil and waste cooking-oil biodiesels appear to have a lower gross heating value, cetane index, exhaust gas temperature, equivalence ratio, black smoke opacity, elemental carbon content, and CO emission and a higher fuel consumption rate and elemental oxygen content.  相似文献   

8.
Commercial sources of edible oils and fats include oil-seeds, fruit pulps, animals and fish. Oilseeds processing typically consists of the following steps: i) seed preparation; ii) solvent extraction of flakes and/or extruded collets; iii) desolventization of the meal;iv) recovery of solvent by distillation; and v) degumming, refining, bleaching, and deodorizing of the crude oil. The process consumes large amounts of energy—in the forms of electricity, natural gas and fuel oils—to heat and cool the oil between individual processing steps and to generate high vacuum. Steam requirements for producing edible oil from crude oil range from 2000 to 4000 Btu/lb depending on the type of oil processed. The processing of cottonseed, corn, peanut and soybean oils alone consumes approximately 64.7 trillion Btu/yr of energy in the United States (based on 15.1×109 Ib crude oil processed). Electricity requirements for a typical refinery are between 120,000 kWh and 160,000kWh/yr (based on 1400 to 1800 kWh/22,000 Ib crude oil processed/hr). Current membrane separation research, as applied to miscella distillation; vapor recovery; condensate return; wastewater treatment; degumming, refining, and bleaching; hydrogenation catalyst recovery; oilseed proteins; and nitrogen production, is reviewed in this paper. The greatest potential for energy savings of 15 to 21 trillion Btu/yr exists in replacing or supplementing conventional degumming, refining, and bleaching processes. Decreased oil losses and decreased bleaching earth requirements are other potential advantages of membrane processing. Approximately 2 trillion Btu/yr could be saved using a hybrid membrane system to recover solvents in extraction of crude oils. Although marginal success has been reported to date, the development of hexane-resistant membranes may make this application viable.  相似文献   

9.
Fernando Preto  Frank Zhang  Jinsheng Wang   《Fuel》2008,87(10-11):2258-2268
Combustion tests for fish oil and its blends with fuel oils were performed in a pilot tunnel furnace and two residential boilers to evaluate fish oil as an alternative fuel for conventional boilers and furnaces. Droplet evaporation tests were also conducted as a complementary study of the combustion properties. Fish oil and the blends burned readily in the facilities. The emissions were generally lower than burning the pure fuel oil except that of NO, which was higher for blends with No. 6 residual fuel oil. With better quality No. 2 fuel oil the NO emission of the blends was at the same level as that of the pure oil. Overall fish oil showed good combustion properties and significant economic and environmental benefits are expected.  相似文献   

10.
The pyrolysis of waste automotive engine oil was investigated using microwave energy as the heat source, and the yield and characteristics of the pyrolysis oils (i.e. elemental analysis, hydrocarbon composition, and potential fuel properties) are presented and discussed. The microwave-heated pyrolysis generated an 88 wt.% yield of condensable pyrolysis oil with fuel properties (e.g. density, calorific value) comparable to traditional liquid transportation fuels derived from fossil fuel. Examination of the composition of the oils showed the formation of light aliphatic and aromatic hydrocarbons that could also be used as a chemical feedstock. The oil product showed significantly high recovery (90%) of the energy present in the waste oil, and is also relatively contaminant free with low levels of sulphur, oxygen, and toxic PAH compounds. The high yield of pyrolysis oil can be attributed to the unique heating mode and chemical environment present during microwave-heated pyrolysis. This study extends existing findings on the effects of pyrolysis process conditions on the overall yield and formation of the recovered oils, by demonstrating that feed injection rate, flow rate of purge-gas, and heating source influence the concentration and the molecular nature of the different hydrocarbons formed in the pyrolysis oils. The microwave-heated pyrolysis can be performed in a continuous operation, and the apparatus described which is fitted with magnetrons capable of delivering 5 kW of microwave power is capable of treating waste oil at a feed rate of 5 kg/h with a positive energy ratio of 8 (energy content of hydrocarbon products/electrical energy supplied for microwave heating) and a net energy output of 179,390 kJ/h. Our results indicate that microwave-heated pyrolysis shows exceptional promise as a means for recycling and treating problematic waste oil.  相似文献   

11.
地沟油制备生物柴油的研究进展   总被引:2,自引:0,他引:2  
岳金方  左春丽  黄琴 《广州化工》2010,38(12):84-85,130
生物柴油是一种原料广泛的可再生性燃料资源,目前世界各国正掀起开发利用生物柴油资源的热潮,与矿物柴油相比,它具有低含硫和低排放污染,可再生,优良的生物可降解性等特点,有广阔的发展前景,而原料问题是制约生物柴油产业发展的瓶颈。地沟油来源广泛,廉价易得,是制备生物柴油的良好原料。利用地沟油制备生物柴油不但可以缓解能源危机、环境污染等社会问题,还提供了废弃食用油脂的合理化利用方式、防止废弃食用油脂再次返回餐桌。文章综述了地沟油的来源及特点、生物柴油的生产技术和应用现状以及我国生物柴油行业存在的问题,并提出了相应的合理化建议。  相似文献   

12.
We report a positive matrix factorization (PMF) analysis of organic particulate material (PM) emissions of aircraft engine exhaust that includes data from five different aircraft engines and two different fuels (petroleum jet fuel and a Fischer-Tropsch fuel) collected over three field missions. PMF of aerosol mass spectrometer (AMS) data was used to identify six distinct factors: two lubrication oil factors, two aliphatic factors, an aromatic factor, and a siloxane factor. Of these, the lubrication oil factors and the siloxane factor were noncombustion sources. The siloxane factor was attributed to silicone tubing used in the sampling system deployed in one of the three missions included in this study, but not the other two. The two lubrication oil factors correlate with the two different lubrication oils used by the aircraft engines evaluated in this study (Mobil II and Air BP) as well as minor differences presumably due to variation in the blend stocks, temperature history, and analytical factors. Overall, the sum of the aliphatic and aromatic factors decreased with increasing power, as expected based on known trends in VOC emissions. The aliphatic #1 factor correlated with soot emissions, especially at power conditions where EIm-soot was greater than 30 mg kg?1. The aliphatic factor #2 mass spectrum shared some similarities with ambient aerosol organic PM present during the tests and correlated most strongly with dilution levels, two observations that suggest that aliphatic #2 contains components found in ambient aerosol. The aromatic factor correlated with benzene emissions, especially at low power conditions were EIm-benzene was greater than 0.03 mg kg?1. Our results improve the current understanding of aircraft PM composition.

Copyright 2014 American Association for Aerosol Research  相似文献   

13.
Yo-ping Greg Wu  Ya-fen Lin  Chang-Tang Chang 《Fuel》2007,86(17-18):2810-2816
The goal of this study is to find out the exhaust emissions differences produced by different kinds of fatty acid methyl esters (FAME) derived from used cooking oils and animal fats, as well as the importance of the purification step in exhaust emissions production. A total of 120 L of waste vegetable oil and 30 L of waste frying oil were collected and converted into three batches of FAME. There were two batches of FAME produced from waste vegetable oil (B01 and B02), and one batch of FAME produced by mixing 2% of waste frying oil with waste vegetable oil (B03). The FAMEs used in this study had higher density, kinematic viscosity, and flash point, but a lower gross heating value, when compared to the premium diesel. The B01 engine produced higher CO formation and the diesel-fuelled engine produced higher CO than the B02 and B03 did for engine speeds higher than 1400 rpm. Most of the FAME fuels produced higher CO2 than the diesel fuel did. The FAME fuels emitted higher NOx and PM, but lower SO2, than the diesel fuel. CnH2n+2, diphenyl sulfone (C12H10O2S), and diethyl phthalate (C12H14O4) can be selected as the character index for the combustion of FAME.  相似文献   

14.
The crude shale oil fractions below 343°C available in the United States, (a) Geokinetics, (b) Occidental, (c) Paraho, and (d) Tosco II, were catalytically hydroprocessed at low, medium and high severities. The hydroprocessed oils were fractionated to the jet fuel cuts range of 121-300°C. Shale-oil jet fuels were characterized and compared with petroleum jet fuels to evaluate their suitability as future jet fuel oil substitutes. Nitrogen content in shale-oil jet cuts was in the range of 0.03 to 1.15 wt%. The lowest nitrogen content, 0.03 wt% in high severity Occidental jet fuel, was considerably higher than that of the petroleum jet fuel cuts (1-5 ppm). The sulfur content and mercaptan sulfur content in shale-oil jet fuel was significantly lower than in petroleum jet fuel (total sulfur = 0.3 wt% maximum, mercaptan sulfur = 0.003 wt% maximum), the hydrogen content (13-14wt%) in the shale-oil jet fuel cut was lower than that of petroleum jet fuel (15-16 wt%). The jet fuel distillates, volume percent of the shale-oil and petroleum, that were operated at the same temperatures were comparable; with the exception of the freezing points of the shale-oil fuel cut which were much higher than those of the petroleum jet fuel.  相似文献   

15.
This paper describes a hands-on project that introduces first year engineering students to life cycle assessment (LCA) through the comparison of the environmental impact of the production and use of three diesel fuels: petroleum diesel, biodiesel from new vegetable oil, and biodiesel from waste vegetable oil. The purpose of this LCA project was to incorporate life cycle thinking into the engineering design process, to apply the four main steps of LCA (definition and scope, inventory analysis, impact assessment and improvement assessment), and to explore some of the challenges associated with each step. The inventory for biodiesel production (from both new and waste vegetable oils) was based on measurements obtained by the students in laboratory experiments. The fossil diesel production inventory was obtained from the SimaPro® database. The inventory for the use of all three fuels was obtained from measurements taken during combustion of the fuels in a generator. A cradle-to-grave life cycle analysis was then conducted using SimaPro® for each fuel. The assessment of learning outcomes indicates a significant increase in conceptual understanding of the four stages of life cycle assessment, and an average gain of over 55% in overall knowledge of life cycle assessment.  相似文献   

16.
The characteristics of jet fuels obtained from typical U.S. shale oils (Geokinetics, Occidental, Paraho and Tosco II) were compared with standard petroleum jet fuels in order to study the possibility of using these shale oils as a substitute. The shale oil fractions distilling below 343°C were catalytically hydroprocessed at low, medium and high severities and fractionated to the jet fuel range (121–300°C). The hydroprocessed products and jet fuels were compared for composition and physical properties. High severity hydroprocessing of shale oils decreased the nitrogen, sulfur, olefin and aromatic content while increasing the hydrogen content. The nitrogen content in shale oil jet fuels was considerably higher even after the high severity treatment. The aromatic content, except in Paraho shale oil, was relatively higher and the hydrogen content was slightly lower. Sulfur and olefin contents were lower at all severities. The physical properties and heat of combustion, except the high freezing point of shale oil jet fuels, were comparable to those of standard petroleum jet fuels.  相似文献   

17.
Experimental results were obtained by testing two different alcohol-derived biodiesel fuels: methyl ester and ethyl ester, both obtained from waste cooking oil. These biodiesel fuels were tested pure and blended (30% and 70% biodiesel content, volume basis) with a diesel reference fuel, which was tested too, in a 2.2 l, common-rail injection diesel engine. The operation modes were selected to simulate the European Driving Cycle. Pure biodiesel fuels, compared to the reference fuel, resulted in a slight increase in fuel consumption, in very slight differences in NOx emissions, and in sharp reductions in total hydrocarbon emissions, smoke opacity and particle emissions (both in mass and number), despite the increasing volatile organic fraction of the particulate matter. The type of alcohol used in the production process was found to have a significant effect on the total hydrocarbon emissions and on the particulate matter composition. As the alcohol used was more volatile, both the hydrocarbon emissions and volatile organic fraction of the particulate matter were observed to increase.  相似文献   

18.
Crude oil blending is a very common practice in petroleum refineries, where the main focus is to minimize the total purchase cost of crude oils under specified blending oil properties. Crude oil blending actually has significant impacts on energy consumption from heating furnaces during crude oil processing. Conceivably, furnace energy consumption from burning fuels such as natural gas, fuel oil, or propane causes huge amounts of CO2 emissions. In this paper, a methodology framework for crude oil blending and processing with simultaneous consideration of energy, emission, and economic profit (E3) is developed. It includes four stages of work: steady‐state modeling, heating energy consumption calculation, emission model development, and economic evaluation. With Aspen HYSYS simulation, the developed methodology provides a quantitative support for refinery to identify an optimal E3 operating strategy. A case study is implemented to demonstrate the efficacy of this methodology.  相似文献   

19.
M. Mani  G. Nagarajan 《Fuel》2010,89(8):1826-1832
Environmental degradation and depleting oil reserves are matters of great concern around the globe. Developing countries like India depend heavily on oil import of about 125 Mt per annum (7:1 diesel/gasoline). Diesel being the main transport fuel in India, finding a suitable alternative to diesel is an urgent need. In this context, waste plastic solid is currently receiving renewed interest. Waste plastic oil is suitable for compression ignition engines and more attention is focused in India because of its potential to generate large-scale employment and relatively low environmental degradation. The present investigation was to study the effect of cooled exhaust gas recirculation (EGR) on four stroke, single cylinder, direct injection (DI) diesel engine using 100% waste plastic oil. Experimental results showed higher oxides of nitrogen emissions when fueled with waste plastic oil without EGR. NOx emissions were reduced when the engine was operated with cooled EGR. The EGR level was optimized as 20% based on significant reduction in NOx emissions, minimum possible smoke, CO, HC emissions and comparable brake thermal efficiency. Smoke emissions of waste plastic oil were higher at all loads. Combustion parameters were found to be comparable with and without EGR. Compression ignition engines run on waste plastic oil are found to emit higher oxides of nitrogen.  相似文献   

20.
Waste cooking oils (WCO), which contain large amounts of free fatty acids produced in restaurants, are collected by the environmental protection agency in the main cities of China and should be disposed in a suitable way. Biodiesel production from WCO was studied in this paper through experimental investigation of reaction conditions such as methanol/oil molar ratio, alkaline catalyst amount, reaction time and reaction temperature which are deemed to have main impact on reaction conversion efficiency. Experiments have been performed to determine the optimum conditions for this transesterification process by orthogonal analysis of parameters in a four-factor and three-level test. The optimum experimental conditions, which were obtained from the orthogonal test, were methanol/oil molar ratio 9:1, with 1.0 wt.% sodium hydroxide, temperature of 50 °C and 90 min. Verified experiments showed methanol/oil molar ratio 6:1 was more suitable in the process, and under that condition WCO conversion efficiency led to 89.8% and the physical and chemical properties of biodiesel sample satisfied the requirement of relevant international standards. After the analysis main characteristics of biodiese sample, the impact of biodiesel/diesel blend fuels on an YC6M220G turbo-charge diesel engine exhaust emissions was evaluated compared with 0# diesel. The testing results show without any modification to diesel engine, under all conditions dynamical performance kept normal, and the B20, B50 blend fuels (include 20%, 50% crude biodiesel respectively) led to unsatisfactory emissions whilst the B′20 blend fuel (include 20% refined biodiesel) reduced significantly particles, HC and CO etc. emissions. For example CO, HC and particles were reduced by 18.6%, 26.7% and 20.58%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号