首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
在铝酸盐、磷酸盐和硅酸盐3种电解液体系中,利用微弧氧化技术在6061铝合金表面原位生长陶瓷膜,通过SEM、XRD、EDS及显微硬度计对陶瓷膜层的微观结构、相组成、元素分布及显微硬度进行分析。结果表明:3种陶瓷膜均为疏松层和致密层组成的双层结构,膜层表面存在许多微孔;陶瓷膜均由α-Al2O3和γ-Al2O3组成,γ-Al2O3衍射峰强度高于α-Al2O3在磷酸盐和硅酸盐体系中,微弧氧化陶瓷膜表面分别含有P和Si元素,表明电解液中的离子参与成膜过程;在铝酸盐中制备的陶瓷膜显微硬度优于其它2种体系,可达到16350MPa,比6061铝合金硬度提高了10倍。  相似文献   

2.
王超  宋仁国 《热加工工艺》2012,41(14):145-147
采用等离子喷涂设备在H13热作模具钢表面制备含有不同质量分数TiO2的Al2O3纳米陶瓷复合涂层。采用X射线衍射仪(XRD)、高温氧化试验、热震试验等手段研究等离子喷涂纳米涂层的相组成及其性能。结果表明,等离子喷涂使α-Al2O3转变为亚稳态的γ-Al2O3相,喷涂后涂层中Al2O3由α-Al2O3相和γ-Al2O3相组成,TiO2仍以金红石相存在。纳米AT20涂层比其他涂层具有更好的抗氧化性能;与其他涂层相比,纳米AT13涂层具有最佳的抗热震性能。  相似文献   

3.
利用燃烧合成结合准热等静压(简称SHS/PHIP)技术在钢板表面制备金属陶瓷复合涂层.采用X射线衍射(XRD)、扫描电镜(SEM)、能谱(EDS)、硬度仪及抗热震性测试仪等测试手段对合成的涂层进行了研究.结果表明:涂层主要是由α-Al2O3相、FeAl2O4(FeO·Al2O3)相组成的金属陶瓷复合体系,其显微组织均匀致密,涂层与基体间为冶金结合,硬度是基体的2.5倍,抗热震试验显示涂层具有良好的结合力.  相似文献   

4.
在Na2SiO3-NaOH体系的电解液中,对Mn元素含量不同的1070纯铝及3003铝合金进行等离子体电解氧化。对所得陶瓷层的厚度及显微硬度进行了测试,并分析了陶瓷层的微观形貌及相组成。结果表明:1070纯铝表面所形成的陶瓷层由α-Al2O3及γ-Al2O3组成,而3003铝合金表面所形成的陶瓷层则由γ-Al2O3组成;处理时间相同时,3003铝合金所形成的陶瓷层较纯铝1070所形成的陶瓷层更厚,但显微硬度更低,致密性下降,Mn元素对反应过程中高温氧化铝相的形成有一定的抑制作用。  相似文献   

5.
雷临苹  叶宏  宋坤  卢秀华  郑杰  欧林南  冯凯 《表面技术》2018,47(10):145-150
目的 进一步提高6061铝合金表面的硬度、耐磨性。方法 应用脉冲Nd:YAG激光器在6061铝合金表面制备了NiAl合金涂层和NiAl/Al2O3-TiO2复合涂层。通过SEM、X射线衍射仪系统研究了Al2O3-TiO2陶瓷相添加对NiAl熔覆层组织形貌、成分分布、物相组成的影响。利用HVS-1000硬度测试仪及HSR-2M高速摩擦磨损机,对熔覆层硬度分布及耐磨性进行测试分析。结果 Al2O3-TiO2陶瓷颗粒加入使涂层宏观成形质量明显提高,表面平整光滑、波纹均匀,熔覆层枝晶间距减小,组织结构明显细化。与NiAl熔覆层相比,在NiAl/Al2O3-TiO2复合涂层中,具有较高硬度的Al3Ni、Al3Ni2硬质相含量增大。同时,高硬度Al2O3和良好韧性的TiO2、NiTi金属间化合物在复合涂层内部形成。NiAl/Al2O3-TiO2复合涂层的显微硬度平均可达650HV0.2,相比NiAl涂层提高了300HV0.2;磨损体积仅为铝合金基体的1/9,相比NiAl涂层降低了35%。干摩擦条件下,NiAl/Al2O3-TiO2复合涂层的犁削、剥落现象显著降低。结论 在细晶强化、硬质相弥散强化及良好韧性的NiTi金属间化合物共同作用下,6061铝合金表面硬度和耐磨性得到显著提高。  相似文献   

6.
激光熔覆等离子喷涂Al2O3陶瓷涂层组织结构研究   总被引:11,自引:1,他引:11  
研究了45钢表面激光熔覆等离子喷涂Al2O3陶瓷涂层的组织结构、显微硬度及滑动磨损特性.结果表明,等离子喷涂Al2O3涂层的组织呈层片状,层间为机械结合,涂层由α-Al2O3, ZrO2和少量γ-Al2O3组成;激光熔覆Al2O3陶瓷涂层组织为细小枝状晶,由α-Al2O3及少量ZrO2组成.激光熔覆Al2O3涂层的显微硬度较高,滑动磨损时耐磨性明显优于等离子Al2O3喷涂层.  相似文献   

7.
2A06铝合金表面微弧氧化陶瓷层摩擦学特性   总被引:3,自引:0,他引:3  
采用微弧氧化技术,以硅酸盐为主要电解液,在2A06铝合金表面制备出高硬度、高耐磨性的微弧氧化陶瓷膜。用扫描电镜观测膜层的显微结构,用X射线衍射分析其相组成,并对膜层进行耐磨损和抗冲蚀试验。结果表明,氧化时间越长,2A06铝合金表面陶瓷层越厚,陶瓷层粗糙度也越高。陶瓷层由过渡层、致密层和疏松层组成。过渡层与基体和致密层结合紧密。致密层的相组成主要为α-Al2O3、γ-Al2O3,疏松层的相组成主要为α-Al2O3、γ-Al2O3以及Al6Si2O3。致密层中的α-Al2O3相的含量远高于疏松层。从试样边缘到试样中心硬度逐渐降低,最高硬度出现在试样表面边缘向内5~20 mm处,平均HV硬度可达20.96 GPa。2A06铝合金的耐磨性比较差,磨轮转速从100 r/min增至400 r/min时,磨损量不断增加且呈线性分布。微弧氧化制备的陶瓷层磨损量在磨损开始时(100 r/min)稍高,磨轮转速到600 r/min时磨损量趋于稳定,磨轮转速到1600 r/min时磨损量仍然呈现较低水平。陶瓷层的冲蚀体积损失率也远低于2A06铝合金基体。  相似文献   

8.
采用等离子喷涂技术在6061铝合金表面制备了不同含量TiO2的氧化铝陶瓷涂层,研究了涂层的相组成、隔热性能及耐腐蚀性。实验结果表明:在喷涂过程中陶瓷层中均有物相的转变。随着粉末中TiO2含量的增加,涂层的耐腐蚀性增强但是隔热性下降。这可能是由于TiO2的导热系数比Al2O3的导热系数高,但其熔点比Al2O3的熔点低,同时脆性较小,在喷涂过程中,TiO2弥散分布在脆性的氧化铝基体中起到了封孔及释放应力、减少裂纹的作用。  相似文献   

9.
铝合金表面微弧氧化陶瓷层耐磨性   总被引:1,自引:1,他引:0  
利用微弧氧化技术在7075铝合金表面形成微弧氧化陶瓷膜层,通过SEM、XRD手段分析了微弧氧化陶瓷层的显微结构、表面形貌和相组成,并在HIT-Ⅱ摩擦磨损试验机上测试了陶瓷膜层的摩擦学性能.结果表明:7075铝合金表面的微弧氧化陶瓷膜层由疏松层、致密层构成,其相组成主要是α-Al2O3和γ-Al2O3两相;氧化陶瓷层与基体结合良好,厚度为25~45μm,表面硬度可达到1900HV0.1左右;微弧氧化表面处理技术可以显著提高铝合金的表面耐磨性,在与GCr15钢球对磨时,膜层具有较低的磨损率,但摩擦因数相对较高.  相似文献   

10.
激光熔覆纳米Al2O3等离子喷涂陶瓷涂层   总被引:30,自引:4,他引:30  
采用X射线衍射仪、扫描电镜和显微硬度计研究了45#钢表面激光熔覆纳米Al2O3改性Al2O3 13%TiO2(质量分数)陶瓷涂层的相组成、微观结构和显微硬度,同时对涂层的磨损特性进行了考察.结果表明,激光重熔区亚稳相γ-Al2O3转变成稳定相α-Al2O3,熔覆层由粗颗粒α-Al2O3和TiO2以及纳米α-Al2O颗粒组成,在激光的作用下,等离子喷涂层的片层状结构得以消除; 纳米Al2O3颗粒仍然保持在纳米尺度,填充在涂层的大颗粒之间,使涂层致密化程度得以提高,因此纳米Al2O3改性涂层的显微硬度较高,且其耐磨性能明显优于等离子喷涂层.  相似文献   

11.
采用等离子喷涂方法在304不锈钢表面制备NiCoCrAlY2O3/(ZrO2+25 %CeO2+3 %Y2O3)耐高温涂层,模拟铸造模具表面的工作环境,涂层在1350 ℃铁水液中加热热震和在炉中大气环境下加热热震后,对涂层组织结构和物相变化进行了对比研究.结果表明:涂层在铁水中热震后,涂层内部的大量裂纹交联在一起,在陶瓷层与粘结层界面靠近陶瓷层一侧出现尺寸近10 μm宽的裂纹,陶瓷层中的部分四方相向单斜相和立方相转变,铁水中部分元素与陶瓷元素发生了扩散并生产新相.  相似文献   

12.
利用微等离子体氧化技术,在7075铝合金表面原位生成了陶瓷层.采用正交实验法确定了在硼酸盐体系中进行微等离子体氧化的最佳电解液配方,通过SEM及XRD分析了陶瓷层的形貌及相组成.结果表明:陶瓷层硬度可达到812HV0.1;陶瓷层表面形貌均匀,膜层致密,主要由γ-Al2O3组成.  相似文献   

13.
氧化时间对 7 A09 超高强铝合金微弧氧化陶瓷膜的影响   总被引:1,自引:1,他引:0  
刘元  李兴俊  龚正朋 《表面技术》2013,42(2):53-55,73
采用NaAlO2-NaOH体系,对7A09超高强铝合金进行微弧氧化,研究了微弧氧化时间对陶瓷层厚度、显微硬度、表面及截面形貌、相组成的影响。结果表明:在其它参数一定的条件下,陶瓷层的厚度和硬度均随氧化时间的延长而不断增长,微弧氧化时间为45 min时,陶瓷层的显微硬度达到最高值1070HV0.1;陶瓷层主要由γ-Al2O3组成。  相似文献   

14.
ZL101铸造铝合金微弧氧化陶瓷层的组织和性能   总被引:7,自引:6,他引:7  
通过等离子体微弧放电在Al-Si铸造铝合金表面沉积出较厚的陶瓷层。用扫描电镜、X射线衍射分析了膜层的形貌、成分和相组成,用显微力学探针测定了硬度和弹性模量分布,并探讨了陶瓷相的形成机理。陶瓷层主要由α-Al2O3、γ-Al2O3和莫来石相组成,膜外层还含有大量SiO2非晶相。膜外层的硅元素主要来自电解液而不是Al-Si合金基体。硬度和弹性模量在陶瓷层里分布具有相似性。从表面到内部,硬度和弹性模量逐渐增加.并在内层有一个极大值。  相似文献   

15.
7A52铝合金表面微弧氧化陶瓷层摩擦学特性   总被引:6,自引:2,他引:4  
利用微弧氧化技术在7A52装甲铝合金表面原位生成了陶瓷层,通过SEM、XRD等手段分析了陶瓷层的表面形貌和物相组成,并在MS-T3000往复式摩擦磨损试验机上考察了陶瓷层在干摩擦条件下的摩擦学行为,分析了陶瓷层的磨损失效机制.结果表明,徼弧氧化陶瓷层由α-Al2O3和γ-Al2O3陶瓷相组成,高硬度的陶瓷层提高了7A52铝合金表面接触载荷承载能力和耐磨性,耐磨性最大提高幅度达到了100倍以上.陶瓷层的磨损机制以磨粒磨损失效为主.  相似文献   

16.
2A12航空铝合金微弧氧化陶瓷层生长过程   总被引:2,自引:0,他引:2  
研究2A12铝合金微弧氧化陶瓷层的生长规律,分析不同氧化时间陶瓷层的表面和截面形貌、成分和相组成。研究表明,陶瓷层总厚度接近于线性增长,向外生长速度比向基体内生长的速率稍大,而致密层占总膜层的比例先快速增加,其后略微下降。SEM结果显示,陶瓷层表面有大量呈火山口状的等离子放电痕迹,随氧化时间延长,厚度在整个表面上趋于相等,界面处氧化膜变得比较平坦。陶瓷层主要由α-Al2O3和γ-Al2O3相组成,随着氧化时间的延长,γ-Al2O3相在陶瓷层中的含量先增加后减小,而α-Al2O3相的含量随氧化时间的延长逐渐提高。  相似文献   

17.
目的探究微弧氧化电解液中纳米α-Al2O3的浓度对铝合金微弧氧化膜层组织和性能的影响。方法在硅酸盐体系电解液中加入1~5 g/L纳米α-Al2O3,微弧氧化获得不同的陶瓷膜层,对膜层的微观结构、厚度、硬度和耐腐蚀性能进行分析。结果膜层的主要组成相为α-Al2O3、γ-Al2O3和SiO2。当纳米α-Al2O3添加量为3 g/L时,膜层表面微裂纹少,孔隙率小,厚度达70μm,硬度为513HV,耐腐蚀性能好。结论硅酸盐电解液中加入纳米α-Al2O3,能够改善铝合金微弧氧化膜层的综合性能。  相似文献   

18.
硅酸盐电解液中铝合金微弧氧化陶瓷膜层的结构与性能   总被引:11,自引:0,他引:11  
在硅酸盐电解液中利用微弧氧化方法,在LYl2铝合金上制备了陶瓷膜层。用扫描电镜(SEM)和X射线衍射仪(XRD)观察分析了其形貌和相组成,测定了膜层厚度、显微硬度,并对涂层进行了耐蚀性和抗热震性研究。结果表明,涂层分为两层,外层为疏松层,内层为致密层,涂层总厚度76μm,致密层厚度50μm,硬度1500HV;涂层相组成为γ-Al2O3和α-Al2O3;涂层在30℃、10%NaOH水溶液和30℃、20%Nacl水溶液中的耐蚀性极好。  相似文献   

19.
采用等离子热喷涂技术以3种工艺参数在Q235钢基体上制备了Al2O3-13%Ti O2涂层。分别采用X射线衍射仪(XRD)、超三维景深设备(VHX-1000)、扫描电镜(SEM)和Image-Pro Plus软件对以不同功率获得的涂层的相组成、表面微观形貌、组织结构和孔隙率进行了分析。结果表明,随着喷涂功率的增大,涂层中α-Al2O3相向γ-Al2O3相的转变逐渐增多。此外,涂层的孔隙率由1.6%降低到0.38%;涂层表面微裂纹有减少的趋势。  相似文献   

20.
通过等离子喷涂方法在穿孔顶头尾部材料42CrMo钢表面分别制备NiCr-Cr3C2涂层和Al2O3(13%TiO2)涂层,运用OM,XRD,SEM等分析测试手段对涂层的组织、形貌和物相成分进行表征,并对两种涂层进行了显微硬度及抗热震性能实验.结果表明:喷涂涂层为典型的层状结构,涂层与基体为机械结合.Al2O3(13%TiO2)涂层以亚稳相γ-Al2O3相为主要相,同时存在α-Al2O3相.喷涂形成NiCr-Cr3C2涂层后物相成分为Cr23C6、Cr7C3、Cr3C2等Cr的碳化物.NiCr-Cr3C2涂层和Al2O3(13%TiO2)涂层的表面平均显微硬度分别为586.4HV,和557.7HV.其平均热震循环次数分别为25次和18次.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号