首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Remodeling of pulmonary capillaries occurs after chronic increases in capillary pressure (e.g., mitral stenosis). Also, remodeling of pulmonary arteries begins within 4 h of increased wall stress and is endothelium dependent. We have previously shown that high lung inflation increases wall stress in pulmonary capillaries. This study was designed to determine whether high lung inflation induces remodeling of the extracellular matrix (ECM) in lung parenchyma. Open-chest rabbits were ventilated for 4 h with 9-cmH2O positive end-expiratory pressure (PEEP) on one lung and 1-cmH2O PEEP on the other (High-PEEP group), or with 2-cmH2O PEEP on both lungs (Low-PEEP group). An additional untreated control group was also included. We found increased levels of mRNA in both lungs of High-PEEP rabbits (compared with both the Low-PEEP and untreated groups) for alpha1(III) and alpha2(IV) procollagen, fibronectin, basic fibroblast growth factor, and transforming growth factor-beta1. In contrast, alpha2(I) procollagen and vascular endothelial growth factor mRNA levels were not changed. We conclude that high lung inflation for 4 h increases mRNA levels of ECM components and growth factors in lung parenchyma.  相似文献   

2.
Treatment of hamster lungs with porcine pancreatic elastase (PPE) causes emphysema and a decrease in lung elastin content, which returns to control level by Day 30. To explore the mechanism of alveolar wall remodeling after elastolytic injury, we examined the expression of elastin and alpha1(I) collagen mRNAs by in situ hybridization at 1, 2, 3, 5, 7, and 30 d after intratracheal PPE. The lungs of control animals displayed weak signals for elastin and alpha1(I) collagen mRNA in pleura, large arteries, veins, and airways. There was little or no signal in respiratory air space walls. Increased expression of elastin and alpha1(I) collagen mRNA began by Day 1 after PPE and reached an asymptote by Day 3 that was maintained by elastin until Day 7; expression of alpha1(I) collagen mRNA waned earlier. Elastin and, to a lesser extent, alpha1(I) collagen mRNA were heavily expressed in pleura, blood vessels, and airways. Analysis of serial sections showed elastin message was minimal in the walls of respiratory air spaces and when present, at 3, 5, and 7 d, was primarily found at the free margins of alveolar septa. Collagen message was very sparse in respiratory air space walls. By 30 d, elastin mRNA expression was reduced but still above control levels and emphysema was widespread and severe. Rank score of elastin mRNA expression in individual subpleural air spaces showed a positive correlation with air space size. In conclusion, most expression of elastin and alpha1(I) collagen mRNA occurs in the pleura, airway, and vascular walls. In respiratory air space walls, expression of elastin mRNAs occurs in damaged tissue at free septal margins.  相似文献   

3.
Pulmonary vascular remodeling, produced by cell hypertrophy and extracellular matrix protein synthesis in response to hemodynamic stress, regresses after reduction of blood pressure, possibly by proteolysis of structural proteins. To test this postulate, we assessed the breakdown of extracellular matrix proteins and expression of collagenase and elastase in pulmonary arteries of rats exposed to hypoxia (10% O2 for 10 d) followed by normoxia. During hypoxia, contents of collagen and elastin increased in pulmonary arteries and latent rat interstitial collagenase was expressed without increased collagenolytic activity or mRNA levels. At 3 days after normoxia, collagen and elastin contents decreased coincident with the new appearance of activated collagenase and transient increases in collagenolytic and elastolytic activities. The amount of immunoreactive collagenase, localized predominately in connective tissue-type mast cells, was increased in the adventitia and media of hypertensive vessels. We conclude that mast cells containing latent collagenase are recruited into the outer walls of pulmonary arteries during remodeling. It is possible that mast cell-derived collagenase contributes to collagen breakdown in pulmonary arteries during early recovery from hypoxia and plays a role in restoration of vascular architecture.  相似文献   

4.
Vascular endothelial growth factor (VEGF) is a potent mitogenic and permeability factor targeting predominantly endothelial cells. At least two tyrosine kinase receptors, Flk-1 and Flt-1, mediate its action and are mostly expressed by endothelial cells. VEGF and VEGF receptor expression are upregulated by hypoxia in vivo and the role of VEGF in hypoxia-induced angiogenesis has been extensively studied in a variety of disease entities. Although VEGF and its receptors are abundantly expressed in the lung, their role in hypoxic pulmonary hypertension and the accompanying vascular remodeling are incompletely understood. We report in this in vivo study that hypoxia increases mRNA levels for both VEGF and Flk-1 in the rat lung. The kinetics of the hypoxic response differ between receptor and ligand: Flk-1 mRNA showed a biphasic response to hypoxia with a significant, but transient, rise in mRNA levels observed after 9-15 h of hypoxic exposure and the highest levels noted after 3 wk. In contrast, VEGF mRNA levels did not show a significant increase with acute hypoxia, but increased progressively after 1-3 wk of hypoxia. By in situ hybridization, VEGF mRNA was localized predominantly in alveolar epithelial cells with increased signal in the lungs of hypoxic animals compared with controls. Immunohistochemical staining with anti-VEGF antibodies localized VEGF peptide throughout the lung parenchyma and was increased in hypoxic compared with normoxic animals. Furthermore, hypoxic animals had significantly higher circulating VEGF concentrations compared with normoxic controls. Lung vascular permeability as measured by extravasation of Evans Blue dye was not significantly different between normoxic and hypoxic animals, although a tendency for increased permeability was seen in the hypoxic animals. These findings suggest a possible role for VEGF in the pulmonary response to hypoxia.  相似文献   

5.
Three experiments were conducted to determine how steady-state levels of mRNA encoding 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase (3 beta-HSD) in the ovine corpus luteum vary 1) between the two steroidogenic luteal cell types, 2) during the estrous cycle, and 3) during prostaglandin F2 alpha (PGF2 alpha)-induced luteolysis. In the first experiment, RNA (10 micrograms) was isolated from purified preparations (n = 4) of large or small steroidogenic luteal cells. Large luteal cells contained 42% more (p < 0.05) message for 3 beta-HSD per microgram RNA than did small luteal cells, while the amount of mRNA for tubulin did not differ between the two types of luteal cells. To determine whether luteal levels of mRNA for 3 beta-HSD differ during the estrous cycle, corpora lutea were collected from cycling ewes (n = 3/day) on Days 3, 6, 9, 12, and 15 postestrus. Levels of mRNA for 3 beta-HSD were similar on Days 3, 6, 9, and 12 but were lower (p < 0.05) on Day 15 postestrus, while levels of mRNA for tubulin were unchanged. In the final experiment, ewes were treated on Day 10 postestrus with two injections of PGF2 alpha (5 mg each) or saline (control) at a 4-h interval. Corpora lutea were collected from ewes (n = 4/treatment) 1 h or 8 h after the second injection of PGF2 alpha or 8 h after the second saline injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Exposure to hypoxia is associated with increased pulmonary artery pressure and plasma endothelin (ET-1) levels and with selective enhancement of ET-1 peptide and messenger RNA (mRNA) and endothelin-A (ET-A) receptor mRNA in rat lung. Our study tested the hypothesis that A-127722, an orally active antagonist of the ET-A receptor, can prevent hypoxia-induced pulmonary hypertension and vascular remodeling in the rat. Pretreatment with A-127722 (3, 10, and 30 mg/kg/day in drinking water for 2 days) caused dose-dependent inhibition of the pulmonary vasoconstrictor response to short-term hypoxia (10% O2, 90 min). Long-term A-127722 treatment (10 mg/kg/day in drinking water for 2 weeks) instituted 48 h before hypoxic exposure attenuated the subsequent development of pulmonary hypertension, the associated right atrial hypertrophy, and pulmonary vascular remodeling. Institution of A-127722 treatment (10 mg/kg/day in drinking water for 4 weeks) after 2 weeks of hypoxia retarded the progression of established hypoxia-induced pulmonary hypertension and right atrial hypertrophy and reversed the pulmonary vascular remodeling despite continuing hypoxic exposure. These findings support the hypothesis that endogenous ET-1 plays a major role in hypoxic pulmonary vasoconstriction/hypertension, right heart hypertrophy, and pulmonary vascular remodeling and suggest that ET-A receptor blockers may be useful in the treatment and prevention of hypoxic pulmonary hypertension in humans.  相似文献   

7.
8.
Analysis of post-infarct ventricular remodeling consistently shows the accumulation of collagen in failing heart. The goal of this study was to gain insights into the underlying mechanisms of this event. We determined the effect of hypoxia, caused as the result of ischemia, on biological responses including cell viability, basal and growth factor-stimulated proliferative capacity and collagen type I production in cardiac fibroblasts obtained from adult human heart. The cell viability, as examined by light microscopy and analysis of DNA, did not change by hypoxia (2% oxygen). Basal level of protein synthesis, as determined by measuring the incorporation of 3H-leucine, decreased (30%, P<0.05) under hypoxia. Transforming growth factor-beta (TGF-beta1)- and thyroid hormone (T3)-induced increases in protein synthesis did not change under hypoxia. In contrast, basic fibroblast growth factor (bFGF)-stimulated protein synthesis enhanced significantly under hypoxia. Angiotensin II (Ang II)-treatment, which did not induce significant changes in protein synthesis under ambient conditions, led to moderate but significant increase under hypoxia. Basal level of DNA synthesis, as determined by measuring the incorporation of 3H-thymidine into DNA, decreased (32%, P<0.05) under hypoxia. The TGF-beta1-induced inhibition of DNA synthesis which was observed under ambient conditions was reversed [61% (P<0.005) increase under hypoxia]. Under ambient conditions, T3, Ang II and bFGF stimulated DNA synthesis and their effects were enhanced under hypoxia. Northern analysis showed a 46% (P<0.05) increase in the level of pro alpha1(l) collagen mRNA under hypoxia. The TGF-beta1-induced increase in the level of pro alpha1(l) collagen mRNA, under ambient conditions, was not observed under hypoxia. On the other hand, the T3-induced decrease in pro alpha1(l) collagen mRNA was reversed under hypoxia. Ang II- and bFGF-treatment of human cardiac fibroblasts did not cause detectable changes in the level of pro alpha1(l) collagen mRNA under ambient conditions or hypoxia. At the protein level, the amount of immunoreactive collagen type I, as determined by immunoslot blot analysis, was increased (33%, P<0.05) under hypoxia. Treatment of human cardiac fibroblasts with TGF-beta1 and T3 under ambient conditions led to diminished level of collagen type I. Under hypoxia, however, effect of both factors was reversed. The level of immunoreactive collagen type I in Ang II- and bFGF-treated cells, which was comparable to that in untreated cells under ambient conditions, remained unchanged under hypoxia. Together, these results provide evidence that hypoxia regulates growth, proliferative capacity and collagen type I production in human cardiac fibroblasts, and that although hypoxia alone may not be a stimulus for human cardiac fibroblast proliferation, it enhances growth factor-induced DNA synthesis in those cells. Furthermore, hypoxia by increasing the basal levels of collagen type I and by reversing the TGF-beta1- and T3-induced inhibition of collagen type I gene expression in human cardiac fibroblasts can enhance overall collagen type I production. Combinatorial effects of hypoxia on proliferation and collagen type I production in cardiac fibroblasts contribute to the post-infarct remodeling of the collagen matrix in failing human heart.  相似文献   

9.
10.
11.
12.
Effects on erythropoiesis and blood pressure as well as physical performance and mental effects were studied in 15 healthy subjects during intermittent exposure to normobaric hypoxia corresponding to either 2000 m (6 persons) or 2700 m (9 persons) above sea level; another group (5 persons) also served as controls at normoxia. The concept "live high-train low" was used for 10 d consecutively and the exposure to hypoxia was 12 h/d. Blood pO2 and oxygen saturation were significantly decreased during the 10 d at hypoxia. [Hb] and Hct decreased significantly after 2 d in hypoxia and then returned to pre-study levels. Erythropoietin was significantly elevated in both hypoxia groups during the initial 3-5 d. Reticulocytes were significantly increased during 7 d of hypoxia. Submaximal and maximal oxygen uptake, blood pressure at rest and during exercise and the profile of mood states (POMS test) did not change during the study. In conclusion, intermittent normobaric hypoxia for 10 d resulted in a significant stimulation of erythropoiesis. Staying at normobaric hypoxia may serve as a complement to an ordinary altitude level sojourn.  相似文献   

13.
Chronic vasodilatation represents a stimulus for capillary growth associated with increased luminal shear stress. We have examined the ultrastructure of more than 2000 capillaries to establish whether the sequence of angiogenesis in response to this stimulus is similar to that described during development and under pathological circumstances. Administration of the alpha1-blocker prazosin to rats for 2 weeks led to a greater capillary length density in extensor hallucis proprius muscles without any change in capillary tortuosity: Jv(c,f)=262+/-54 compared with 350+/-17 mm-2, control compared with prazosin (P<0.002). There were obvious signs of endothelial cell (EC) activation after prazosin treatment, including an increased proportion of capillaries with rough endoplasmic reticulum, large cytoplasmic vacuoles, thickened endothelium and an irregular luminal surface. Capillaries from control muscles had a maximum of three ECs in cross section, whereas four ECs were noted in 0.8+0.5% of capillaries after 1 week (n.s.) and 2.5+/-0.9% after 2 weeks (P<0.01) of treatment. This could be due to elongation and/or migration of ECs, as cell proliferation has not been described at these time points. There was also an increase in the proportion of capillaries having a narrow, slit-like lumen (1.7+/-0. 8% of controls; 7.1+/-1.9% at 1 week; 8.8+/-2.5% at 2 weeks; P<0.02), some of which were smaller in size (less than 2 microm diameter) than in controls (3-5 microm) and/or "seamless", i.e. lacking EC junctions. These may represent newly formed vessels. Focal discontinuity of the basement membrane and abluminal EC processes were rarely seen, and capillary growth by abluminal sprouting appeared to be very infrequent (less than 0.001% of profiles). Of more importance was growth starting from the luminal side. Significantly more thin cytoplasmic processes were observed protruding into the lumen of capillaries after 1 week (47.5+/-6.2%, P<0.001) and 2 weeks of prazosin (34.2+/-5.5%, P<0.05) than in control vessels (16.7+/-3.9%). Some of these traversed the entire lumen and connected with endothelium of the opposite side, probably involving membrane fusion, resulting in the appearance of a double lumen. Individual capillaries with a complete double lumen were observed after 2 weeks' prazosin but comparatively rarely, in only four out of six muscles. These findings indicate a pattern of luminal growth which is completely different from intussusceptive growth previously described during development, and from the abluminal capillary sprouting seen under pathological circumstances.  相似文献   

14.
The formation of new microvasculature by capillary sprouting at the site of islet transplantation is crucial for the long-term survival and function of the graft. Vascular endothelial growth factor (VEGF), an endothelial cell-specific mitogen with potent angiogenic and vascular permeability-inducing properties, may be a key factor in modulating the revascularization of islets after transplantation. In this study, we examined the gene expression of VEGF mRNA in three tumor cell lines and in isolated whole and dispersed rat islets in vitro by Northern blot hybridization in normoxic (5% CO2, 95% humidified air) and hypoxic (1% O2, 5% CO2, 94% N2) culture conditions. Increased expression of VEGF mRNA was observed in beta-TC3, RAW 264.7, and IC-21 tumor cell lines when subjected to hypoxia. With isolated whole islets in normoxic culture, a threefold increase in VEGF mRNA (P < 0.001) was seen at 48 h as compared with freshly isolated islets. This response was similar to the 3.8-fold increase observed with islets subjected to hypoxia. Dispersed rat islet cell clusters cultured on Matrigel for 24 h under hypoxic conditions showed a 3.4-fold increase (P < 0.01) in VEGF mRNA compared with those cultured in normoxia. This correlated with increased VEGF secretion as determined by enzyme-linked immunosorbent assay. Immunohistochemical studies revealed the presence of increased expression of VEGF protein near the center of islets after 24 h of normoxic culture. Islet cell clusters on Matrigel showed intense cellular localization of VEGF in both beta-cells and non-beta-cells. These findings suggest that rat islet cells, when subjected to hypoxia during the first few days after transplantation, may act as a major source of VEGF, thereby initiating revascularization and maintaining the vascular permeability of the grafted islets.  相似文献   

15.
16.
To investigate mechanisms of capillary network remodeling, we developed a serum-free angiogenesis in vitro system in three-dimensional fibrin matrices which allows the study of directional growth of endothelial sprouts, anastomosis, and remodeling ('pruning') of the primitive plexus toward more elaborated capillary trees. To follow the movements of living endothelial cells by inverse-fluorescence microscopy, we cocultured unlabeled endothelial cells with endothelial cells labeled with the carbocyanine dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). We show that elongation and retraction of neighboring capillary sprouts occurs simultaneously, resembling a tug-of-war by which endothelial cells are withdrawn from shortening sprouts to become incorporated in other sprouts nearby. For the first time, we directly demonstrate the long-suspected parallel sliding movement of endothelial cells. We show that cell migration persists within immature capillaries even after sprouts have merged to continuous capillary loops, leading to overlapping growth of opposing sprout tips. As a novel concept of capillary remodeling, we distinguish two types of endothelial cell migration: sprouting and guided migration. Sprouting is the de novo invasion of a matrix by endothelial cells, and guided migration is the locomotion of cells along preexistent capillary-like structures. We show that guided migration leads to remodeling of immature capillary networks and to the retraction of sprouts. We describe a method for quantification of sprouting versus guided migration in DiI-mosaic-labeled capillary networks, and we present evidence that endothelial cell-derived basic fibroblast growth factor serves as a chemotactic signal for other cells to migrate along a preestablished capillary-like structure.  相似文献   

17.
18.
19.
StAR protein may facilitate rapid transfer of cholesterol from the outer to the inner mitochondrial membrane, the site at which cholesterol is converted to pregnenolone by the cholesterol side chain cleavage complex. We have studied the effect of ACTH treatment on StAR mRNA and protein levels in bovine adrenocortical cells in primary culture. Cells were initially cultured for 3 days after isolation, and then treated with ACTH (10(-8) M) for various times up to 24 hours. Northern analysis of total BAC mRNA, using a [alpha32P]-labelled cDNA probe encoding a 5' region of bovine StAR mRNA, revealed two principal hybridising species of 1.6 and 3.0 kb. Western immunoblot analysis revealed a principal band at 30 kDa. Levels of both StAR mRNA and protein showed an increase at 1 hour, reached a maximum at around 6 hours and declined to basal levels at 24 hours. Cortisol secretion (measured by RIA) showed a similar change over the same period. From these results it appears that StAR mRNA and protein levels in BAC are acutely regulated in concert with ACTH-stimulated cortisol secretion.  相似文献   

20.
We examined the hypoxic tolerance phenomenon in vitro. Brief exposure to hypoxia induced the production of basic fibroblast growth factor (bFGF) mRNA and protein in rat cortical neurons and protected them from hypoxic injury. Cortical neurons were cultured from 18th-day rat embryos in a serum-free medium and subjected to brief (4 h) and/or prolonged (24 h) hypoxia. Neuronal damage was assessed by quantifying lactate dehydrogenase (LDH) activity in the medium. After brief hypoxia, LDH release was identical to that of the controls, whereas prolonged hypoxia caused a significant increase in LDH release, indicating neuronal death. However, if brief hypoxia was applied 2 days prior to the prolonged hypoxia, no increase in LDH release was observed. The bFGF mRNA expression was assessed with Northern blot and protein immunoreactivity with Western blot analysis. The brief period of hypoxia caused a 2.5-fold increase in bFGF mRNA and considerable bFGF protein expression 1 day later, but prolonged hypoxia caused increase in the expression of bFGF mRNA at 2 days and no protein expression until 3 days after the start of the hypoxia. When cells were subjected to prolonged hypoxia 2 days after brief hypoxia, however, no increase in bFGF mRNA was observed, while bFGF protein was expressed continuously. We also observed that exogenously applied bFGF reduced neuronal injury produced by prolonged hypoxia. The results obtained with this model suggest that brief hypoxia induces bFGF protein and thus tolerance to subsequent lethal hypoxia. Basic FGF might play a role as a tolerance-associated factor in this process. Thus, an in vitro model is useful for assessing the response of cortical neurons to hypoxic stress and for researching new factors related to ischemic tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号