首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Q-switched and mode-locked pulse generation in Erbium-doped fiber lasers (EDFLs) are demonstrated using Poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) organic semiconductor material as a saturable absorber (SA) for the first time. The MEH-PPV was prepared in the form of a thin film having a modulation depth of 12% and saturation intensity of 40?MW/cm2. The SA was placed in a laser cavity to produce a stable Q-switched operating at 1564.0?nm. The maximum repetition rate of 78.62?kHz, minimum pulse width of 3.54?µs and maximum pulse energy of 59.45?nJ were attained at 125.2?mW pump power. On the other hand, by incorporating an additional 100?m long single mode fiber, the mode locked EDFL self-started as the pump power was raised above 125.2?mW. The soliton pulse was obtained due to the enhancement of the nonlinearity in the cavity. The mode-locked laser operated at 1568.5?nm with a fixed repetition rate of 1.859?MHz and pulse width of 2.97?ps.  相似文献   

2.
We present the fabrication of a high optical quality single-walled carbon nanotubes (SWNTs) polyvinyl alcohol (PVA) composite film. The composites demonstrate strong saturable absorption at ~1.5 μm, the spectral range for optical communications. By measuring the nonlinear transmission of a sub-picosecond pump pulse through the film, we were able to deduce a saturation fluence of ~13.9 μJ/cm2 and a modulation depth ~16.9% (in absorption) at a high pulse fluence ~200 μJ/cm2. Transient saturable absorption is investigated by measuring the transmitted autocorrelation traces at various incident power levels. Observed side-peak suppression indicates a fast recovery time on the scale of ~1 ps for our saturable absorber devices. Furthermore, we use these SWNT-PVA composite saturable absorbers as mode-lockers in an Er3+ fiber ring laser and achieve ~560 fs pulse generation with good jitter performance and long term stability. The laser performance is also associated with the parameters of our SWNT based saturable absorber.  相似文献   

3.
ABSTRACT

This paper reports a new type of passive saturable absorber (SA) made of transition metal oxide (TMO) embedded in polyvinyl alcohol (PVA). The Tungsten trioxide (WO3)-PVA SA is placed in an erbium-doped fibre laser cavity to produce Q-switched pulses operating at 1562.82?nm. The pulse laser starts to manifest at the threshold pump power of 40?mW and continues to exist until the maximum pump power of 195?mW. Within that pump power range, its pulse energy, repetition rate and pulse width vary from 98 to 142.85?nJ, 29.86 to 56.7?kHz and 5.032 to 1.85?µs, respectively. The pulse train is stable with a signal to noise ratio of 70?dB. This is the first demonstration of a Q-switched laser using such a SA.  相似文献   

4.
A diode-pumped Tm:YAlO3 (Tm:YAP), solid-state Q-switched mode-locking (QML) laser was achieved for the first time by using a graphene oxide saturable absorber on gold reflective film. A pulse width for mode-locking inside the Q-switch envelope of 2?ns with a repetition rate of 156.25?MHz has been obtained at the central wavelength of 1973?nm (32?nm full width at half maximum). The measured maximum average output power amounts to 464 mW under an incident pump power of 9.52?W. By using graphene oxide saturable absorber on golden reflective film instead of the tail end cavity mirror, we not only achieved a broadened spectral region 2?µm laser, but also deepened the modulation of the QML.  相似文献   

5.
A laser-diode-pumped passively Q-switched Nd:YVO4 green laser with periodically poled KTP (PPKTP) and GaAs saturable absorber has been realized. The dependences of pulse repetition rate, pulse energy, pulse width and peak power on incident pump power for the generated-green-light pulses are measured. At the maximum incident pump power of 4.1 W, the maximum average output power of 113 mW is obtained, corresponding to an optical conversion efficiency of 2.8%. At the same pump power, stable green laser pulses of duration of 44.6 ns and energy of 0.28 µJ are generated at a repetition rate of 403.4 kHz. The coupling wave rate equations for a passively Q-switched laser are also given and the numerical solutions agree with the experimental results.  相似文献   

6.
A tunable, passively Q-switched thulium doped fluoride fibre (TDFF) laser using a reduced-graphene oxide-silver (rGO-Ag) thin film as a saturable absorber (SA) for S band operation is proposed and its efficacy demonstrated. Over a pump power range of 91.4?mW up to 158.6?mW, passively generated Q-switched pulses are observed with repetition rates from 20 to 34.5?kHz and pulse widths from 3.1 to 7.1?µs. The highest pulse energy observed is 101.2?nJ with a signal to noise ratio of ~42?dB. The proposed laser has a tuning range ~52?nm from 1458 to 1510?nm with a tunable bandpass filter (TBPF) introduced into the cavity.  相似文献   

7.
In this work, a passively Q-switched Thulium/Holmium-doped fibre laser (THDFL) using a molybdenum tungsten disulphide (MoWS2) saturable absorber (SA) is proposed and demonstrated. The MoWS2 nanosheets are prepared by hydrothermal exfoliation and then suspended in a polyvinyl alcohol (PVA) thin film host. Q-switching of the THDFL at a maximum 1550 nm pump power of 445.2 mW gives a maximum repetition rate and minimum pulse width of 36.3 kHz and 2.8 µs with a corresponding pulse energy of 86.4 nJ and peak power of 31.1 mW. The MoWS2 based Q-switched THDFL's output has a very high signal-to-noise value of ~62.2 dB which strongly indicates that the laser is working in a stable operation. To the best of our knowledge, this is the first demonstration of MoWS2 as a passive SA in a THDFL for operation in the 2.0 µm region. The proposed laser would have significant medical and sensing applications, particularly at the biologically active 2.0–2.1 µm regions.  相似文献   

8.
W Yang  J Hou  B Zhang  R Song  Z Liu 《Applied optics》2012,51(23):5664-5667
A passively Q-switched fiber laser near 2?μm is achieved with a semiconductor saturable absorber mirror (SESAM) as a saturable absorber. Stable Q-switched pulses are generated from an extremely compact setup with a central wavelength of 1958.2?nm. Under the bidirectional pump configuration, the repetition rate of the fiber laser can be widely tuned from 20 to 80?kHz by increasing the pump power at the same time the pulse width decreases from 1?μs to 490?ns. When the incident pump power is 1.3?W, the average output power, the pulse repetition rate, the pulse width, and the highest single pulse energy are 91?mW, 80?kHz, 490?ns, and 1.14?μJ, respectively. To further optimize the system configuration, the pulse width can be reduced to 362?ns when the cavity length is reduced.  相似文献   

9.
A diode-pumped doubly Q-switched and mode-locked (QML) YVO4/NdYVO4 laser is realized with the electro-optic (EO) modulator and Cr4+:YAG saturable absorber, in which the repetition rate of the Q-switched envelope is controlled by the active EO modulation while the mode-locked pulses inside the Q-switched envelope depend on both the actively modulated loss and the passive saturable absorption. The experimental results show that the doubly QML laser can generate more stable and shorter pulses with higher peak power when compared with the singly passively QML laser with Cr4+:YAG. At the pump power of 20 W and the repetition rate 1 kHz, a 21 ns Q-switched pulse envelope with a average mode-locked peak power of 544 kW is obtained, which is the shortest Q-switched pulse envelope to my knowledge. In comparison to the singly passively QML laser with Cr4+:YAG, the doubly QML laser has compressed the Q-switched envelope pulse width 70% and improved the mode-locked pulsed peak power 27 times. By using a hyperbolic secant square function and considering the Gaussian distribution of the intracavity photon density, the coupled equations for diode-pumped dual-loss-modulated QML laser is given and the numerical solutions of the equations are in good agreement with the experimental results.  相似文献   

10.
A passive Q-switched and mode-locked ytterbium-doped fibre laser (YDFL) pulse generation using a nickel oxide thin film as a saturable absorber is reported. The nickel oxide nanoparticle thin film was fabricated by a simple processing technique, and it has a modulation depth of 39% and saturation intensity of 0.04 MW/cm2. The saturable absorber was constructed by inserting a small piece of the film between two fibre ferrules. Then it was integrated in a YDFL cavity. The Q-switching operation started at a threshold pump power of 117.73 mW with an initial wavelength of 1073.5 nm. When the pump power was raised from 117.73 to 133 mW, the repetition rate grew from 9.5 to 15.8 kHz. The pulses had a maximum pulse energy of 478 nJ. Furthermore, a stable self-started mode-locked pulse was also succesfully generated at the threshold pump power of 97.3 mW. The central wavelength and repetition rate of the laser were 1037.72 nm and 23 MHz, respectively. The maximum pulse energy of 0.56 nJ and a peak power of 26.4 W were recorded at a pump power of 137.5 mW.  相似文献   

11.
A diode-pumped passively Q-switched mode-locking Nd:GdVO4 laser using a chemically reduced graphene oxide saturable absorber was demonstrated. The repetition rate and pulse width of the Q-switching envelopes were 5.7 MHz and 100 ns, respectively, while those of the mode-locking pulses that were modulated in the Q-switching envelopes were 139 MHz and 10 ps. At the maximum pump power of 7 W, the average output power was 1.38 W, corresponding to a slope efficiency of 25%.  相似文献   

12.
Multi-wavelength and Q-switched EDFLs are demonstrated using a MoS2 thin film as stabilizer and saturable absorber, respectively. For a multi-wavelength output, a 50-m-long PCF is incorporated into the cavity to induce unstable multi-wavelength oscillation and a MoS2 thin film is further incorporated into the cavity to achieve stable multi-wavelength. The laser generates 11 lasing wavelengths with constant spacing of 0.47 nm at pump power of 250 mW. In the case of the Q-switched EDFL, MoS2 thin film is utilized as a saturable absorber. Q-switched operation occurrs at a threshold pump power of 28.86–51.48 mW and the spectrum is centered at 1561.15 nm. The pulse repetition rate showed increasing trend from 18.57–30.72 kHz whereas the pulse width decreased from 53.85–32.54 μs in the Q-switched pump power range. The highest pulse energy of 30.73 nJ is obtained at pump power of 51.48 mW.  相似文献   

13.
A new saturable absorber Q switch for 1.54-mum Er:glass lasers is presented. The saturable absorber is a transparent glass ceramic that contains magnesium-aluminum spinel nanocrystallites doped with tetrahedrally coordinated Co(2+) ions. We obtained Q-switched pulses of up to 5.5 mJ in energy and 80 ns in duration at 1.54 mum. The relaxation time of (4)A(2) ?(4)T(1)((4)F) transition bleaching was measured to be (450 ? 150) ns. Ground-state and excited-state absorption cross sections at 1.54-mum wavelength were estimated to be (3.2 ? 0.4) x 10(-19) cm(2) and (5.0 ? 0.6) x 10(-20) cm(2), respectively.  相似文献   

14.
In this paper, a stable and robust all-fibre passively Q-switched erbium-doped fibre laser (EDFL) emitting at 1558?nm is described. The proposed laser utilizes an 11?cm long erbium-doped fibre as saturable absorber (SA). The fibre SA features a linear optical absorption of about 13?dB in the Q-switched EDFL operating regime. By elevating the input pump power from the threshold of 60?mW to the maximum available power of 142?mW, a pulse train with a maximum repetition rate of 86?kHz, minimum pulse width of 3.39?µs, maximum average output power of 10.5?mW, maximum pulse energy of 122?nJ and maximum peak power of 36?mW are obtained. The signal to noise ratio (SNR) of the spectrum is measured to be around 70?dB. This fibre SA is simple, reliable, compact and alignment free. Thus it is suitable for making a portable pulse laser source.  相似文献   

15.
We demonstrate a Q-switched Erbium-doped fibre laser (EDFL) utilizing cobalt oxide (Co3O4) nanocubes film based saturable absorber (SA) as a passive Q-switcher. Co3O4 nanocubes are embedded into a polyethylene oxide film to produce a high nonlinear optical response, which is useful for SA application. It has saturation intensity and modulation depth of 3 MW/cm2 and 0.35%, respectively. The proposed laser cavity successfully generates a stable pulse train where the pulse repetition rate is tunable from 29.8 to 70.92 kHz and the pulse-width reduces from 10.9 to 5.02 μs as the 980 nm pump power increases. This result indicates that the Co3O4 is excellent for constructing an SA that can be used in producing a passively Q-switched fibre laser operating at a low pump intensity. To the best of our knowledge, this is the first demonstration of Co3O4 film based fibre laser.  相似文献   

16.
We have demonstrated a diode-side-pumped Q-switched Nd:YAG laser operating at 1319?nm with a saturable absorber of graphene oxide fabricated by the vertical evaporation method. The 1319?nm Q-switched laser pulses were realized with average output power of 820 mW, pulse width of 2?μs and repetition rate of 35?kHz. The pulse energy and peak power were 23.4?μJ and 11.7?W, respectively when the optical pump power was 232?W. The experimental results indicate that graphene oxide is an effective saturable absorber for Q-switched lasers.  相似文献   

17.
Passive mode-locking of a ceramic Nd: YAG laser was demonstrated using highly purified single walled carbon nanotubes (SWCNTs) as the saturable absorber (SA). Poly [(9,9-dihexylfluorenyl-2,7-diyl)-co-(9,10-an-thracene)] or PFO was used to extract a purified sample of semiconducting SWCNTs that consisted of mainly (7, 5) nanotubes (∼80% of the SWCNT ensemble). The pulses had a near Fourier transform-limited pulse width of about 8.3 ps in a non-dispersion compensated setup. In addition, Z-scan investigations revealed that SWCNT SA had a saturation intensity of about 1.7 MW cm−2 with a modulation depth of about 6% and a non-saturable loss of about 5.5%.  相似文献   

18.
By using single-walled carbon nanotubes as the saturable absorber fabricated by a vertical evaporation method, passive mode-locking of a Nd:GdVO4 laser was realized in a W-type folded cavity. The laser generated 8?ps pulses at a repetition rate of 81?MHz. At 10.4?W of the incident pump power, average output power of 1.22?W was achieved and the corresponding peak power and energy of a single pulse were 1.88?kW and 15?nJ, respectively.  相似文献   

19.
PbS quantum-dot-doped glasses are demonstrated as saturable absorber Q-switches for 2 microm holmium lasers. Q-switched pulses from Ho3+:Y3Sc2Al3O12 and Ho3+:Y3Al5O12 lasers of 50 and 70 ns in duration, respectively, have been obtained demonstrating up to 13% of energy conversion efficiency from free-running to Q-switched output.  相似文献   

20.
A doubly Q-switched 1.06 μm pulsed laser using a novel tape casting YAG/Nd:YAG/YAG composite ceramic with a sandwich structure was demonstrated for the first time. Compared to purely acousto-optical (AO) Q-switching, this laser using an AO Q-switch and Cr4+:YAG saturable absorber simultaneously can generate shorter pulses. The pulsed laser performance was investigated at two modulated repetition rates of 10 and 20 kHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号