首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
The current research work was executed with an aim to explore and promote the potential of self-microemusifying drug delivery systems (SMEDDS) in the form of tablets, in order to enhance solubility and oral bioavailability of poorly aqueous soluble drug Repaglinide (RPG). RPG-loaded liquid SMEDDS were developed consisting Labrafil M 1944CS, Kolliphor EL and Propylene glycol, which were then characterized on various parameters. After characterization and optimization, liquid SMEDDS were converted into solid form by adsorbing on Aeroperl® 300 pharma and polyplasdoneTM XL. Further, selection of suitable excipients was done and mixed with prepared solidified SMEDDS powder followed by the preparation of self-microemulsifying tablets (SMET’s) wet granulation–compression method. SMET’s were subjected to differential scanning calorimetry (DSC) and particle X-ray diffraction (RXRD) studies, results of which indicated transformation of crystalline structure of RPG because of dispersion of RPG at molecular level in liquid SMEDDS. This was further assured by micrographs obtained from scanning electron microscope. SMET’s shown more than 85% (30?min) of in vitro drug release in contrast to conventional marketed tablets (13.2%) and pure RPG drug (3.2%). Results of in vivo studies furnished that SMET’s had shown marked decrease in the blood glucose level and prolonged duration of action (up to 8?h) in comparison with conventional marketed tablets and pure RPG drug. In conclusion, SMET’s serves as a promising tool for successful oral delivery of poorly aqueous soluble drug(s) such as RPG.  相似文献   

2.
Self-emulsifying drug delivery systems (SES) were developed to improve oral bioavailability of asenapine maleate (ASM), an antipsychotic drug with challenging amphiphobic nature and extensive pre-systemic metabolism. ASM-SES was prepared by choosing the proportion of oil, surfactant, co-surfactant from constructed phase diagram. The in vitro and ex vivo evaluation was done. In vivo evaluation was done through pharmacokinetic and pharmacodynamic studies. Role of lymphatic absorption was studied by lymphatic absorption inhibition study. A formulation consisting of 9.9%, 59.4%, 29.7% and 1% of oil, surfactant, co-surfactant, and drug respectively was considered as optimized formulation. After various evaluation test, the globule size and zeta potential for optimized formulation (SES4) were found to be 137.9?nm and ?28.8?mV respectively. A maximum of 99.64?±?0.16% of ASM was released from SES4 in 60?minutes of time. The flux (ex vivo study) increased by 2.33 folds, which prove the enhanced release and permeation of ASM when loaded into SES. The animals administered with SES4 showed higher activity and good pharmacodynamic response than the control and ASM-Suspension, which may be due to the greater availability of the drug. The maximum pharmacodynamic response was observed at the tmax determined by Pharmacokinetic studies. The bioavailability increased by 1.64 folds with 16.55?±?3.11% as extend of lymphatic absorption (r?=?0.9732). Good in vitro in vivo correlation was observed. ASM-SES is a novel approach to effectively deliver ASM and improve the oral bioavailability.  相似文献   

3.
Context: Nanosuspensions (NSs) of poorly water-soluble drugs are known to increase the oral bioavailability.

Objectives: The purpose of this study was to develop NS of efavirenz (EFV) and to investigate its potential in enhancing the oral bioavailability of EFV.

Materials and methods: EFV NS was prepared using the media milling technique. The Box–Behnken design was used for optimization of the factors affecting EFV NS. Sodium lauryl sulfate and PVP K30 were used to stabilize the NS. Freeze-dried NS was completely re-dispersed with double-distilled filtered water.

Results: Mean particle size and zeta potential of the optimized NS were found to be 320.4?±?3.62?nm and –32.8?±?0.4 mV, respectively. X-ray diffraction and differential scanning calorimetric analysis indicated no phase transitions. Rate and extent of drug dissolution in the dissolution medium for NS was significantly higher compared to marketed formulation. The parallel artificial membrane permeability assay revealed that NS successfully enhanced the permeation of EFV. Results of in situ absorption studies showed a significant difference in absorption parameters such as Ka, t1/2 and uptake percentages between lyophilized NS and marketed formulation of EFV. Oral bioavailability of EFV in rabbits resulting from NS was increased by 2.19-fold compared to the marketed formulation.

Conclusion: Thus, it can be concluded that NS formulation of EFV can provide improved oral bioavailability due to enhanced solubility, dissolution velocity, permeability and hence absorption.  相似文献   

4.
Platelet-rich plasma (PRP) accelerates wound healing, as it is an excellent source of growth factors. PRP was separated from whole human blood by centrifugation. PRP powder and wafers were prepared by lyophilization, with the wafers prepared using sodium carboxymethylcellulose (Na CMC). The PRP wafers showed porous structures, as indicated by scanning electron microscopy (SEM) images, and the ability of the wafer to absorb exudates and thus promote wound healing was tested with the hydration capacity test. The platelet count was tested and indicated that the presence of PRP in the wafers had no effect on the platelet count. An antimicrobial activity test was carried out, showing that PRP had antibacterial activity against Gram-negative bacteria. Compared with lyophilized PRP powder and PRP-free wafers, PRP wafers showed the highest percent of wound size reduction on induced wounds in rats. Histopathological examination of rat skin showed that the PRP wafers achieved the shortest healing time, followed by the lyophilized PRP powder and finally the PRP-free wafers. The present study revealed that PRP can be formulated as a wafer, which is a promising pharmaceutical delivery system that can be used for enhanced wound-healing activity and improved the ease of application compared to lyophilized PRP powder.  相似文献   

5.
Erectile dysfunction (ED) is the most important disorder after premature ejaculation for sexual activity in men. Vardenafil hydrochloride (VH) is an oral therapy for the treatment of erectile dysfunction. VH oral disintegrating tablets (ODTs) have been prepared by freeze drying technique to improve its dissolution profile and the overall clinical performance. Dapoxetine hydrochloride (DH) was added to the best three formulae of the prepared VH ODTs to treat premature ejaculation. All the ODTs formulae were evaluated for weight variation, friability, drug content, in vitro disintegration time, wetting time, and the dissolution study. Gelatin as a matrix former with N-methylpyrrolidone as a solubilizer in VH/DH ODTs improved the dissolution rate and extent of release of VH and DH with 100% of drug being dissolved after 15?min. In vivo study results from six healthy male volunteers showed shorter Tmax of VH from VH/DH ODT of 0.583?±?0.129?h and shorter Tmax of DH from VH/DH ODT of 0.625?±?0.137?h and showed AUC0–12 of VH from VH/DH ODT of 39.234?±?10.932?ng/ml?h1 and AUC0–12 of DH from VH/DH ODT of 531.681?±?129.544?ng/ml?h1, with relative bioavailability values of 100.9 and 85%, respectively, compared to (Levitra®) and (Priligy®).  相似文献   

6.
Objective: The current study involves the development of liposomal dry powder for inhalation (LDPI) containing licorice extract (LE) for use in tuberculosis.

Significance: The current epidemiology of tuberculosis along with the increasing emergence of resistant forms of tuberculosis necessitates the need for developing alternative efficacious medicines for treatment. Licorice is a medicinal herb with reported activity against Mycobacterium tuberculosis.

Methods: Liposomes with LE were prepared by thin film hydration technique and freeze dried to obtain LDPI. The comprehensive in vitro and in vivo characterization of the LDPI formulation was carried out.

Results: The particle size of liposomes was around 210?nm with drug entrapment of almost 75%. Transmission electron microscopy revealed spherical shape of liposome vesicles. The flow properties of the LDPI were within acceptable limits. Anderson Cascade Impactor studies showed the mean median aerodynamic diameter, geometric standard deviation and fine particle fraction of the LDPI to be 4.29?µm, 1.23, and 54.68%, respectively. In vivo lung deposition studies of LDPI in mice showed that almost 46% of the drug administered reaches the lungs and 16% of administered drug is retained in the lungs after 24?hours of administration. The in vivo pharmacodynamic evaluation of the LDPI showed significant reduction in bacterial counts in lungs as well as spleen of TB-infected mice.

Conclusions: LE LDPI thus has a promising potential to be explored as an effective anti-tubercular medicine or as an adjunct to existing anti-tubercular drugs.  相似文献   


7.
Purpose: The conventional dosage form of Ketoconazole (KZ) shows poor absorption due to rapid gastric emptying. Chitosan based mucoadhesive nanoparticles (NPs) of KZ were developed to efficiently release drug at its absorption window i.e. stomach and the site of action i.e. esophagus.

Method: The NPs were prepared by ionic gelation method. Concentration of polymer, cross-linking agent and ratio of drug/polymer as well as polymer/cross linking agent were optimized.

Results: NPs had 69.16?±?5.91% mucin binding efficiency, particle size of 382.6?±?2.384?nm, ζ potential of +48.1?mv and entrapment efficiency of 59.84 ± 1.088%. DSC thermogram indicated absence of any drug polymer interaction. The drug release was by controlled, non-fickian diffusion mechanism. Ex vivo diffusion studies were performed by emptying the stomach contents after 2?h to simulate in vivo gastric emptying. The results showed that drug diffusion from the solution across stomach mucosa stopped after emptying whereas that from the NPs continued upto 5?h. Hence we could conclude that the NPs must have adhered to the stomach mucosa and thereby would have been retained at this absorption site even after gastric emptying.

Conclusion: The orally delivered KZ loaded mucoadhesive NPs can be used as an efficient carrier for delivering drug at its absorption window i.e. the stomach and the site of action i.e. esophagus even after gastric emptying.  相似文献   

8.
Objective: The aim of this study was to develop chronotherapeutic drug delivery system of indomethacin using polyethylene oxide (PEO) with a predetermined lag time of 6 h by compression coating technique.

Materials and methods: Solid dispersions (SD) of indomethacin were prepared using novel carrier sucrose fatty acid ester (SFE 1815) to increase the in vitro dissolution. The optimized SD was formulated as immediate release core tablet which were further coated with PEO (WSR Coagulant or WSR N12 K) using compression coating technique. Compression coated tablets formulated with PEO WSR Coagulant in 1:1.7 ratio of core tablet weight and coating polymer was considered as optimized formulation, which was further characterized by differential scanning calorimetry, X-ray diffractometry, Fourier transformed infrared spectroscopy, and scanning electron microscopy.

Results: The results indicated that there was no chemical incompatibility and slight change in surface properties. Cmax, area under the curve (AUC0-t), and Tmax following oral ingestion of commercial capsule (Indocap) and optimized formulation (CT 4) were found to be 1973.18 ± 36.89 ng/mL, 11090.09 ± 131.21 ng/mL/h, 0.99 ± 0.02 h and 2115.46 ±6 2.61, 10413.14 ± 299.66 ng/mL/h, 7.00±0.02 h, respectively.

Conclusion: Unaltered AUC0-t and Cmax, but delayed Tmax indicated clear lag time before immediate release of drug which is suitable for treating rheumatoid arthritis following circadian rhythm.  相似文献   

9.
Amphotericin B (AMB) was often used in intra-articular injection administration for fungal arthritis, because it could often bring a satisfactory therapeutic efficacy and a minimum systemic toxic side effect. However, because of the multiple operations and the frequent injections, the compliance of the patients was bad. Therefore, to develop a long-term sustained-released preparation of AMB for mycotic arthritis intra-articular administration is of great significance. The purpose of present study was to develop a long-term sustained-released in situ gel of a water-insoluble drug AMB for mycotic arthritis intra-articular administration. Based on the evaluations of the in vitro properties of the formulations, the formulation containing 10% (w/w) ethanol, 15% (w/w) PG, 0.75% (w/w) HA, 5% (w/w) purified soybean oil, 0.03% (w/w) α-tocopherol, 15% (w/w) water and 55% (w/w) glyceryl monooleate was selected as a suitable intra-articular injectable in situ gel drug delivery system for water-insoluble drug AMB. Furthermore, the results of the in vivo study on rabbits showed that the selected formulation was a safe and effective long-term sustained-released intra-articular injectable AMB preparation. Therefore, the presented in situ AMB gel could reduce the frequency of the administration in the AMB treatment of fungal arthritis, and then would get a good patient compliance.  相似文献   

10.
Objectives: The study was aimed to improve bioavailability of baclofen by developing gastroretentive floating drug delivery system (GFDDS).

Methods: Preliminary optimization was done to select various release retardants to obtain minimum floating lag time, maximum floating duration and sustained release. Optimization by 32 factorial design was done using Polyox WSR 303 (X1) and HPMC K4M (X2) as independent variables and cumulative percentage drug released at 6?h (Q6h) as dependent variable.

Results: Optimized formulation showed floating lag time of 4–5 s, floated for more than 12?h and released the drug in sustained manner. In vitro release followed zero ordered kinetics and when fitted to Korsemeyer Peppas model, indicated drug release by combination of diffusion as well as chain relaxation. In vivo floatability study confirmed floatation for more than 6?h. In vivo pharmacokinetic studies in rabbits showed Cmax of 189.96?±?13.04?ng/mL and Tmax of 4?±?0.35?h for GFDDS. The difference for AUC(0–T) and AUC(0–∞) between the test and reference formulation was statistically significant (p > 0.05). AUC(0–T) and AUC(0–∞) for GFDDS was 2.34 and 2.43 times greater than the marketed formulation respectively.

Conclusion: GFDDS provided prolonged gastric residence and showed significant increase in bi oavailability of baclofen.  相似文献   

11.
Objective: The present investigation was aimed at optimizing of estradiol (E2) loaded l-amino acid derivatives organogel formulations resulting in improved the high initial release problems and sustained release of E2.

Methods: The visco-elastic properties of blank organogels were measured by rheometer. The E2 organogel formulations were optimized using a central composite design. Also, the effect of gelator structure and composition of the gel formulations on release behavior (in vitro and in vivo) had been studied.

Results: The change of the gelator structure could affect significantly the stiffness of the implants. The release behavior of gel without N-Methyl-2-pyrrolidinone (NMP) was controlled by gel corrosion only. While the drug release of the gel with NMP was controlled by both corrosion and diffusion. The high initial release problems of the organogels were improved by optimizing the formulations. The system consisting by N-Lauroyl l-lysine methyl ester (LLM) derivative in the oil indicated the lowest initial drug release, showed a much lower blood drug level and maintained a steady state for nearly 1 month.

Conclusion: Organogels based on l-lysine methyl ester derivative were ideal carriers for long-term parenteral administration of E2.  相似文献   

12.
The prevalence of hyperuricemia is relatively high worldwide, and a great number of patients are suffering from its complications. 6-shogaol, an alkylphenol compound purified from the root of ginger (Zingiber officinale Roscoe), has been proved to possess diverse pharmacological activities. However, its poor aqueous solubility usually leads to low bioavailability, and further clinical applications will be greatly discounted. The current study aimed to formulate a 6-shogaol-loaded-Self Microemulsifying Drug Delivery System (SMEDDS) to amend low aqueous solubility and bioavailability orally, as well as, potentiate the hyperuricemic activity of the 6-shogaol. SMEDDS was developed with central composite design established on a two system components viz., 18.62% W/W ethyl oleate (oil phase) and ratio of tween 80 (surfactant) to PEG 400 (co-surfactant) (1.73:1, W/W). Based on quadratic model, the navigation of the design space could generate spherically-shaped and homogenous droplets with respective mean particle diameter, polydispersity and of 20.00?±?0.26?nm and 0.18?±?0.02. The 6-shogaol-SMEDDS showed significant elevation of cumulative release compared with the free 6-shogaol and more importantly a 571.18% increment in the relative oral bioavailability of the drug. The predominant accumulation of 6-shogaol-SMEDDS in the liver suggested hepatic-targeting potentiality of the drug. Oral administration of 6-shogaol-SMEDDS in hyperuricemic rats also significantly decreased uric acid level and xanthine oxidase activity. Histological studies confirmed formulation groups indeed could provide better protection of kidney than free drug groups. Collectively, these findings indicated that the SMEDDS hold much promise in enhancing the oral delivery and therapeutic efficacy of 6-shogaol.  相似文献   

13.
As an anti-tumor drug, gemcitabine (Gem) is commonly used for the treatment of non-small cell lung cancer and pancreatic cancer. However, there are several clinical drawbacks to using Gem, including its extremely short plasma half-life and side effects. To prolong its half-life and reduce its side effects, we synthesized a derivative of Gem using cholesterol (Chol). This derivative, called gemcitabine-cholesterol (Gem-Chol), was entrapped into liposomes by a thin-film dispersion method. The particle size of the Gem-Chol liposomes was 112.57?±?1.25?nm, the encapsulation efficiency was above 99%, and the drug loading efficiency was about 50%. In vitro studies revealed that the Gem-Chol liposomes showed delayed drug release and long-term stability at 4?°C for up to 2 months. In vivo studies also showed the superiority of the Gem-Chol liposomes, and compared with free Gem, the Gem-Chol liposomes had longer circulation time. Moreover, an anti-tumor study in H22 and S180 tumor models showed that liposomal entrapment of Gem-Chol improved the anti-tumor effect of Gem. This study reports a potential formulation of Gem for clinical application.  相似文献   

14.
Objective: Design chitosan based nanoparticles for tenofovir disoproxil fumarate (TDF) with the purpose of enhancing its oral absorption.

Significance: TDF is a prodrug that has limited intestinal absorption because of its susceptibility to gut wall esterases. Hence, design of chitosan based polymeric novel nanocarrier systems can protect TDF from getting metabolized and also enhance the oral absorption.

Methods: The nanoparticles were prepared using the ionic gelation technique. The factors impacting the particle size and entrapment efficiency of the nanoparticles were evaluated using design of experiments approach. The optimized nanoparticles were characterized and evaluated for their ability to protect TDF from esterase metabolism. The nanoparticles were then studied for the involvement of active transport in their uptake during the oral absorption process. Further, in vivo pharmacokinetic studies were carried out for the designed nanoparticles.

Results: The application of design of experiments in the optimization process was useful to determine the critical parameters and evaluate their interaction effects. The optimized nanoparticles had a particle size of 156?±?5?nm with an entrapment efficiency of 48.2?±?1%. The nanoparticles were well characterized and provided metabolic protection for TDF in the presence of intestinal esterases. The nanoparticles were able to increase the AUC of tenofovir by 380%. The active uptake mechanisms mainly involving clathrin-mediated uptake played a key role in increasing the oral absorption of tenofovir.

Conclusions: These results show the ability of the designed chitosan based nanoparticles in enhancing the oral absorption of TDF along the oral route by utilizing the active endocytic uptake pathways.  相似文献   

15.
The aim of this study was to develop hyperoside (Hyp) nanocrystals to enhance its dissolution rate, oral bioavailability and anti-HBV activity. Hyp nanocrystals were prepared using high pressure homogenization technique followed by lyophilization. A Box–Behnken design approach was employed for process optimization. The physicochemical properties, pharmacokinetics and anti-HBV activity in vivo of Hyp nanocrystal prepared with the optimized formulation were systematically investigated. Hyp nanocrystals prepared with the optimized formulation was found to be rod shaped with particle size of 384?±?21?nm and PDI of 0.172?±?0.027. XRPD studies suggested slight crystalline change in drug. Dissolution rate obtained from Hyp nanocrystals were markedly higher than pure Hyp. The nanocrystals exhibited enhanced Cmax (7.42?±?0.73 versus 3.80?±?0.66?mg/L) and AUC0???t (193.61?±?16.30 versus 91.92?±?17.95?mg·h/L) with a 210.63% increase in relative bioavailability. Hyp nanocrystals exhibited significantly greater anti-HBV activity than Hyp. These results suggested that the developed nanocrystals formulation had a great potential as a viable approach to enhance the bioavailability of Hyp.  相似文献   

16.
Objective: Olmesartan medoxomil (OLM) is an antihypertensive drug with low oral bioavailability (28%) resulting from poor aqueous solubility, presystemic metabolism and P-glycoprotein mediated efflux. The present investigation studies the role of lipid nanocarriers in enhancing the OLM bioavailability through oral delivery.

Materials and methods: Solid lipid nanoparticles (SLN) were prepared by solvent emulsion-evaporation method. Statistical tools like regression analysis and Pareto charts were used to detect the important factors effecting the formulations. Formulation and process parameters were then optimized using mean effect plot and contour plots. The formulations were characterized for particle size, size distribution, surface charge, percentage of drug entrapped in nanoparticles, drug–excipients interactions, powder X-ray diffraction analysis and drug release in vitro.

Results and discussion: The optimized formulation comprised glyceryl monostearate, soya phosphatidylcholine and Tween 80 as lipid, co-emulsifier and surfactant, respectively, with an average particle size of 100?nm, PDI 0.291, zeta potential of ?23.4?mV and 78% entrapment efficiency. Pharmacokinetic evaluation in male Sprague Dawley rats revealed 2.32-fold enhancement in relative bioavailability of drug from SLN when compared to that of OLM plain drug on oral administration.

Conclusion: In conclusion, SLN show promising approaches as a vehicle for oral delivery of drugs like OLM.  相似文献   

17.
To prolong the precorneal resident time and improve ocular bioavailability of the drug, Pluronic-g-poly(acrylic acid) copolymers were studied as a temperature-responsive in situ gelling vehicle for an ophthalmic drug delivery system. The rheological properties and in vitro drug release of Pluronic-g-PAA copolymer gels, as well as the in vivo resident properties of such in situ gel ophthalmic formulations, were investigated. The rheogram and in vitro drug release studies indicated that the drug release rates decreased as acrylic acid/Pluronic molar ratio and copolymer solution concentration increased. It was also shown that the drug concentration had no obvious effect on drug release. The release rates of drug from such copolymer gels were mainly dependent on the gel dissolution. In vivo resident experiments showed the drug resident time and the total resident amount increased by 4-fold and 1.2-fold for in situ gel compared with eye drops. These in vivo experimental results, along with the rheological properties and in vitro drug release studies, demonstrated that in situ gels containing Pluronic-g-PAA copolymer may significantly prolong the drug resident time and thus improve bioavailability. The results showed that the Pluronic-g-PAA copolymer can be a promising in situ gelling vehicle for ophthalmic drug delivery.  相似文献   

18.
Objective: The aim of the present investigation was to investigate the efficacy of solid lipid nanoparticles (SLNs) to enhance the absorption and bioavailability of lurasidone hydrochloride (LH) following oral administration.

Methods: The LH loaded SLNs (LH-SLNs) were prepared by high pressure homogenization (HPH) method, optimized using box Behnken design and evaluated for particle size (PS), entrapment efficiency (EE), morphology, FTIR, DSC, XRD, in vitro release, ex vivo permeation, transport studies across Caco-2 cell line and in vivo pharmacokinetic and pharmacodynamic studies.

Results: The LH-SLNs had PS of 139.8?±?5.5?nm, EE of 79.10?±?2.50% and zeta potential of ?30.8?±?3.5?mV. TEM images showed that LH-SLNs had a uniform size distribution and spherical shape. The in vitro release from LH-SLNs followed the Higuchi model. The ex vivo permeability study demonstrated enhanced drug permeation from LH-SLNs (>90%) through rat intestine as compared to LH-suspension. The SLNs were found to be taken up by energy dependent, endocytic mechanism which was mediated by clathrin/caveolae-mediated endocytosis across Caco-2 cell line. The pharmacokinetic results showed that oral bioavailability of LH was improved over 5.16-fold after incorporation into SLNs as compared to LH-suspension. The pharmacodynamic study proved the antipsychotic potential of LH-SLNs in the treatment of schizophrenia.

Conclusion: It was concluded that oral administration of LH-SLNs in rats improved the bioavailability of LH via lymphatic uptake along with improved therapeutic effect in MK-801 induced schizophrenia model in rats.  相似文献   

19.
The objective of research was to develop a novel pH-triggered polymeric nanoparticulate in situ gel (NP-ISG) for ophthalmic delivery of acetazolamide (ACZ) to enhance the conjunctival permeation and precorneal residence time of the formulation by overcoming the limitations of protective ocular barriers. Nanoparticles (NP1--NP12) were developed by nanoprecipitation method and evaluated for pharmacotechnical characteristics including transmission electron microscopy. The optimized formulation, NP10 was dispersed in carbopol 934?P to form nanoparticulate in situ gels (NP-ISG1--NP-ISG5). NP-ISG5 was selected as optimized formulation on the basis of gelation ability and residence time. Ex vivo transcorneal permeation study exhibited significantly higher ACZ permeation from NP-ISG5 (74.50?±?2.20?mg/cm2) and NP10 (93.5?±?2.25?mg/cm2) than eye drops (20.08?±?3.12?mg/cm2) and ACZ suspension (16.03?±?2.14). Modified Draize test with zero score indicated nonirritant property of NP-ISG5. Corneal toxicity study revealed no visual signs of tissue damage. Further, NP-ISG5 when tested for hypotensive effect on intraocular pressure (IOP) in rabbits revealed that NP-ISG5 caused significant decrease in IOP (p?in vitro efficacy, safety and patient compliance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号