首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate here the performance and the application of a radial basis function artificial neural network (RBF-ANN) type, in the inversion of seismic data. The proposed structure has the advantage of being easily trained by means of a back-propagation algorithm without getting stuck in local minima. The effects of network architectures, i.e. the number of neurons in the hidden layer, the rate of convergence and prediction accuracy of ANN models are examined. The optimum network parameters and performance were decided as a function of testing error convergence with respect to the network training error. An adequate cross-validation test is run to ensure the performance of the network on new data sets. The application of such a network to synthetic and real data shows that the inverted acoustic impedance section was efficient.  相似文献   

2.
The present study aims at developing an artificial neural network (ANN) to predict the compressive strength of concrete. A data set containing a total of 72 concrete samples was used in the study. The following constituted the concrete mixture parameters: two distinct w/c ratios (0.63 and 0.70), three different types of cements and three different cure conditions. Measurement of compressive strengths was performed at 3, 7, 28 and 90 days. Two different ANN models were developed, one with 4 input and 1 output layers, 9 neurons and 1 hidden layer, and the other with 5, 6 neurons, 2 hidden layers. For the training of the developed models, 60 experimental data sets obtained prior to the process were used. The 12 experimental data not used in the training stage were utilized to test ANN models. The researchers have reached the conclusion that ANN provides a good alternative to the existing compressive strength prediction methods, where different cements, ages and cure conditions were used as input parameters.  相似文献   

3.
Artificial neural networks (ANN) using raw electroencephalogram (EEG) data were developed and tested off-line to detect transient epileptiform discharges (spike and spike/wave) and EMG activity in an ongoing EEG. In the present study, a feedforward ANN with a variable number of input and hidden layer units and two output units was used to optimize the detection system. The ANN system was trained and tested with the backpropagation algorithm using a large data set of exemplars. The effects of different EEG time windows and the number of hidden layer neurons were examined using rigorous statistical tests for optimum detection sensitivity and selectivity. The best ANN configuration occurred with an input time window of 150 msec (30 input units) and six hidden layer neurons. This input interval contained information on the wave component of the epileptiform discharge which improved detection. Two-dimensional receiver operating curves were developed to define the optimum threshold parameters for best detection. Comparison with previous networks using raw EEG showed improvement in both sensitivity and selectivity. This study showed that raw EEG can be successfully used to train ANNs to detect epileptogenic discharges with a high success rate without resorting to experimenter-selected parameters which may limit the efficiency of the system.  相似文献   

4.

The growth of density and circulation speed of railway transportation systems in urban areas increases the importance of the research issues of the produced environmental impacts. This study presents a field data analysis, obtained during monitoring campaigns of ground vibration, due to light railway traffic in urban areas, based on the artificial neural network (ANN) approach, using quantitative and qualitative predictors. Different ANN-based models, using those predictors, were evaluated/trained and validated. Using several criteria, including those that measures the possibility of ANN overfitting (RR2) and complexity (AIC), the best ANN model was successfully obtained for Lisbon area. This model, with 16 input elements (quantitative and qualitative predictors), 2 neurons on the hidden layer with a hyperbolic tangent sigmoid transfer function, and 1 neuron on the output layer considering a linear transfer function, has 0.9720 for the coefficient of determination and 0.5293 for the sum squared error.

  相似文献   

5.

In this paper, two artificial intelligent systems, the artificial neural network (ANN) and particle swarm optimization (PSO), were combined to form a hybrid PSO–ANN model that was used to improve estimates of glucose and xylose yields from the microwave–acid pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on pretreatment parameters. ANN is a powerful tool capable of determining the relationship between the desired input and output data while PSO was used as a robust population-based search algorithm to optimize the performance of the ANN model. Specifically, it was used to determine the optimum number of neurons in the hidden layer and the best value of the learning rate of the ANN model. The optimization method includes minimizing the fitness function mean absolute error that was found to be 0.0176. The PSO algorithm suggested an optimum number of neurons in the hidden layer as 15 and a learning rate of 0.761 these consequently used to construct the ANN model. After constructing the hybrid PSO–ANN model, the performance of the intelligent system was examined by determining the regression coefficient (R 2) for estimating the experimental values of glucose and xylose and compared to the results from a response surface methodology (RSM) model. The results of R 2 of the hybrid PSO–ANN model for glucose and xylose were 0.9939 and 0.9479, respectively, while the RSM model results for the same sugars were 0.8901 and 0.8439. This analysis reveals that the hybrid PSO–ANN model offers a higher degree of accuracy in comparison with the more commonly used RSM model.

  相似文献   

6.
In this paper, we apply Artificial Neural Network (ANN) trained with Particle Swarm Optimization (PSO) for the problem of channel equalization. Existing applications of PSO to Artificial Neural Networks (ANN) training have only been used to find optimal weights of the network. Novelty in this paper is that it also takes care of appropriate network topology and transfer functions of the neuron. The PSO algorithm optimizes all the variables, and hence network weights and network parameters. Hence, this paper makes use of PSO to optimize the number of layers, input and hidden neurons, the type of transfer functions etc. This paper focuses on optimizing the weights, transfer function, and topology of an ANN constructed for channel equalization. Extensive simulations presented in this paper shows that, as compared to other ANN based equalizers as well as Neuro-fuzzy equalizers, the proposed equalizer performs better in all noise conditions.  相似文献   

7.
SPOT VEGETATION is a recent sensor at 1 km resolution for land surface studies. Cloud detection based on this sensor is complicated by the absence of a thermal band. An artificial neural network was thus trained for the cloud detection on atmospherically corrected S1 daily data and on top of the atmosphere reflectance P data, from the SPOT VEGETATION system. It consists of a multi‐layer perceptron with one hidden sigmoid layer, trained with the Levenberg–Marquardt back‐propagation algorithm and generalized by the Bayesian regularization. Two neural networks allowed optimal cloud detections to be obtained. The first used all four bands of S1 data with 13 hidden nodes, and the second employed all four bands of P data with 11 hidden nodes. The multiple‐layer perceptrons lead to a cloud detection accuracy of 98.0% and 97.6% for S1 and P data, respectively, when trained to map three predefined values that classify cloud, water and land. The network was further evaluated using three SPOT VEGETATION images taken at different dates. The network detected not only bright thick clouds but also thin or less bright clouds. The analysis demonstrated the superior classification of the network over the standard cloud masks provided with the data.  相似文献   

8.
To enhance the approximation and generalization ability of classical artificial neural network (ANN) by employing the principles of quantum computation, a quantum-inspired neuron based on controlled-rotation gate is proposed. In the proposed model, the discrete sequence input is represented by the qubits, which, as the control qubits of the controlled-rotation gate after being rotated by the quantum rotation gates, control the target qubit for rotation. The model output is described by the probability amplitude of state |1〉 in the target qubit. Then a quantum-inspired neural network with sequence input (QNNSI) is designed by employing the quantum-inspired neurons to the hidden layer and the classical neurons to the output layer. An algorithm of QNNSI is derived by employing the Levenberg–Marquardt algorithm. Experimental results of some benchmark problems show that, under a certain condition, the QNNSI is obviously superior to the ANN.  相似文献   

9.
The deformation behavior of type 304L stainless steel during hot torsion is investigated using artificial neural network (ANN). Torsion tests in the temperature range of 600–1200 °C and in the (maximum surface) strain rate range of 0.1–100 s?1 were carried out. These experiments provided the required data for training the neural network and for subsequent testing. The input parameters of the model are strain, log strain rate and temperature while torsional flow stress is the output. A three layer feed-forward network was trained with standard back propagation (BP) and Resilient propagation (Rprop) algorithm. The paper makes a robust comparison of the performances of the above two algorithms. The network trained with Rprop algorithm is found to perform better and also needs less number of iterations for convergence. The developed ANN model employing this algorithm could efficiently track the work hardening, dynamic softening and flow localization regions of the deforming material. Sensitivity analysis showed that temperature and strain rate are the most significant parameters while strain affects the flow stress only moderately. The ANN model, described in this paper, is an efficient quantitative tool to evaluate and predict the deformation behavior of type 304L stainless steel during hot torsion.  相似文献   

10.
《Applied Soft Computing》2007,7(3):1112-1120
In this paper, an artificial neural network (ANN) model is proposed to predict the first lactation 305-day milk yield (FLMY305) using partial lactation records pertaining to the Karan Fries (KF) crossbred dairy cattle. A scientifically determined optimum dataset of representative breeding traits of the cattle is used to develop the model.Several training algorithms, viz., (i) gradient descent algorithm with adaptive learning rate; (ii) Fletcher–Reeves conjugate gradient algorithm; (iii) Polak–Ribiére conjugate gradient algorithm; (iv) Powell–Beale conjugate gradient algorithm; (v) Quasi-Newton algorithm with Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update; and (vi) Levenberg–Marquardt algorithm with Bayesian regularization; along with various network architectural parameters, i.e., data partitioning strategy, initial synaptic weights, number of hidden layers, number of neurons in each hidden layer, activation functions, regularization factor, etc., are experimentally investigated to arrive at the best model for predicting the FLMY305.Also, a multiple linear regression (MLR) model is developed for the milk-yield prediction. The performances of ANN and MLR models are compared to assess the relative prediction capability of the former model.It emerges from this study that the performance of ANN model seems to be slightly superior to that of the conventional regression model. Hence, it is recommended that the ANNs can potentially be used as an alternative technique to predict FLMY305 in the KF cattle.  相似文献   

11.
鲜切花价格指数是反映鲜切花市场现状的风向标,研究鲜切花价格指数变化,掌握鲜花市场的动态和规律性具有重要意义。本文针对具有时序特点的鲜切花价格指数,基于BP模型中的L-M优化算法构建鲜切花价格指数短期预测模型,采用tansig和purelin作为各层之间的传递函数,利用时间序列分析方法确定输入层的神经元个数,通过实验数据对比来确定隐含层的神经元个数。采用平均绝对误差、平均相对误差和均方根误差这3个评价指标对模型的预测精度进行检验,实验结果表明所构建模型是有效的和具有实际应用价值的。  相似文献   

12.
This study compares the daily potato crop evapotranspiration (ETC) estimated by artificial neural network (ANN), neural network–genetic algorithm (NNGA) and multivariate nonlinear regression (MNLR) methods. Using a 6-year (2000–2005) daily meteorological data recorded at Tabriz synoptic station and the Penman–Monteith FAO 56 standard approach (PMF-56), the daily ETC was determined during the growing season (April–September). Air temperature, wind speed at 2 m height, net solar radiation, air pressure, relative humidity and crop coefficient for every day of the growing season were selected as the input of ANN models. In this study, the genetic algorithm was applied for optimization of the parameters used in ANN approach. It was found that the optimization of the ANN parameters did not improve the performance of ANN method. The results indicated that MNLR, ANN and NNGA methods were able to predict potato ETC at desirable level of accuracy. However, the MNLR method with highest coefficient of determination (R 2 > 0.96, P value < 0.05) and minimum errors provided superior performance among the other methods.  相似文献   

13.
针对神经网络初始结构的设定依赖于工作者的经验、自适应能力较差等问题,提出一种基于半监督学习(SSL)算法的动态神经网络结构设计方法。该方法采用半监督学习方法利用已标记样例和无标记样例对神经网络进行训练,得到一个性能较为完善的初始网络结构,之后采用全局敏感度分析法(GSA)对网络隐层神经元输出权值进行分析,判断隐层神经元对网络输出的影响程度,即其敏感度值大小,适时地删减敏感度值很小的神经元或增加敏感度值较大的神经元,实现动态神经网络结构的优化设计,并给出了网络结构变化过程中收敛性的证明。理论分析和Matlab仿真实验表明,基于SSL算法的神经网络隐层神经元会随训练时间而改变,实现了网络结构动态设计。在液压厚度自动控制(AGC)系统应用中,大约在160 s时系统输出达到稳定,输出误差大约为0.03 mm,与监督学习(SL)方法和无监督学习(USL)方法相比,输出误差分别减小了0.03 mm和0.02 mm,这表明基于SSL算法的动态网络在实际应用中能有效提高系统输出的准确性。  相似文献   

14.
将人工神经网络技术用于超声强化超临界流体萃取过程的模拟,以香椿叶中黄酮类化合物为提取对象,系统地研究萃取温度、萃取压力、流体流量、夹带剂、萃取时间、超声电功率对超声强化超临界流体萃取的影响,建立结构为7-10-1的三层BP网络模型,确定输入层—隐含层、隐含层—输出层之间的传递函数的最优化组合形式,选择较好的L-M算法,可以用一定量的萃取实验数据对网络进行训练,能够对同类实验结果进行模拟,更真实反映超声强化超临界流体萃取实验规律。  相似文献   

15.
In this paper, we applied Bayesian multi-layer perceptrons (MLP) using the evidence procedure to predict malignancy of ovarian masses in a large (n = 1,066) multi-centre data set. Automatic relevance determination (ARD) was used to select the most relevant inputs. Fivefold cross-validation (5CV) and repeated 5CV was used to select the optimal combination of input set and number of hidden neurons. Results indicate good performance of the models with area under the receiver operating characteristic curve values of 0.93–0.94 on independent data. Comparison with a linear benchmark model and a previously developed logistic regression model shows that the present problem is very well linearly separable. A resampling analysis further shows that the number of hidden neurons specified in the ARD analyses for input selection may influence model performance. This paper shows that Bayesian MLPs, although not frequently used, are a useful tool for detecting malignant ovarian tumours.  相似文献   

16.
The main purpose of the present study is to develop some artificial neural network (ANN) models for the prediction of limit pressure (P L) and pressuremeter modulus (E M) for clayey soils. Moisture content, plasticity index, and SPT values are used as inputs in the ANN models. To get plausible results, the number of hidden layer neurons in all models is varied between 1 and 5. In addition, both linear and nonlinear activation functions are considered for the neurons in output layers while a nonlinear activation function is employed for the neurons in the hidden layers of all models. Logistic activation function is used as a nonlinear activation function. During the modeling studies, total eight different ANN models are constructed. The ANN models having two outputs produced the worst results, independent from activation function. However, for P L, the best results are obtained from the feed-forward neural network with five neurons in the hidden layer, and logistic activation function is employed in the output neuron. For E M, the best model producing the most acceptable results is Elman recurrent network model, which has 4 neurons in the neurons in the hidden layer, and linear activation function is used for the output neuron. Finally, the results show that the ANN models produce the more accurate results than the regression-based models. In the literature, when empirical equations based on regression analysis were used, the best root mean square error (RMSE) values obtained to date for P L and E M have been 0.43 and 5.65, respectively. In this study, RMSE values for P L and E M were found to be 0.20 and 2.99, respectively, by using ANN models. It was observed that using ANN approach drastically increases the prediction accuracy in terms of RMSE criterion.  相似文献   

17.
It is significant to build up the risk classification model of cervical cancer for the evaluation of high-risk population. Data were divided into two sub-data, one is model building sub-data, the other is model testing sub-data. By using of artificial neural network (ANN) analysis method (Back Propagation, BP), the risk classification model had been setup. The parameters were listed as following: the data had been treated as normalization, and the level of network was 3, and the number of neural in hidden level was 5, and the transmitting function between input level and hidden level was logsig, and the transmitting function between hidden level and output level was purelin, and the studying method was Levenberg–Marquardt optimizing, and the error parameter eg = 0.09, maximum epochs me = 8000. The model quality was good (sensitivity = 98%, specificity = 97%), and the back calculation fitting result was excellent. The predictive value of 10 unknown data was also good, during which the correct rate of control group was 100%, and that of case group was 80%. Because ANN is with the character of self-organizing, self-learning and self-adapting, the ANN risk classification model is fit for the screening of high-risk population of local cervical cancer, risk evaluation of cervical cancer and the effect evaluation of the prevention method after training the model by new data of some area.  相似文献   

18.
Cold expansion of holes is a technique, generating intricate three-dimensional residual stresses around fastener holes essentially vital for airplane fatigue resistance. In this work, attention was given to Artificial Neural Networks (ANN) modeling to build up and train simulations of stress topography surrounding a 4% expanded hole. For this, experimental data of recently abridged step drilling-Fourier method was employed. At input layer of ANN; information available for steps through thickness and radial directions, angular variation around the hole, and at output layer, residual hoop stresses were exercised to train and test multilayered, hierarchically connected and directed networks with varying number of hidden layers. It was shown that Levenberg–Marquardt (LM) model with 9 neurons in hidden layer yielded the best of the results, as error percentages were remarkably small both in training and testing sequences. Several results of step drilling-Fourier solution (ATÖzdemir method), diffraction methods and current ANN predictions were overlaid and similarities in residual stress distributions perceived to valid only at regions where strain gradient was not changing precipitously. Nevertheless, best fit to strain data at confusing zones was achieved after ANN modeling.  相似文献   

19.
In this paper methodologies are proposed to estimate the number of hidden neurons that are to be placed numbers in the hidden layer of artificial neural networks (ANN) and certain new criteria are evolved for fixing this hidden neuron in multilayer perceptron neural networks. On the computation of the number of hidden neurons, the developed neural network model is applied for wind speed forecasting application. There is a possibility of over fitting or under fitting occurrence due to the random selection of hidden neurons in ANN model and this is addressed in this paper. Contribution is done in developing various 151 different criteria and the evolved criteria are tested for their validity employing various statistical error means. Simulation results prove that the proposed methodology minimized the computational error and enhanced the prediction accuracy. Convergence theorem is employed over the developed criterion to validate its applicability for fixing the number of hidden neurons. To evaluate the effectiveness of the proposed approach simulations were carried out on collected real-time wind data. Simulated results confirm that with minimum errors the presented approach can be utilized for wind speed forecasting. Comparative analysis has been performed for the estimation of the number of hidden neurons in multilayer perceptron neural networks. The presented approach is compact, enhances the accuracy rate with reduced error and faster convergence.  相似文献   

20.
This paper proposes a novel model by evolving partially connected neural networks (EPCNNs) to predict the stock price trend using technical indicators as inputs. The proposed architecture has provided some new features different from the features of artificial neural networks: (1) connection between neurons is random; (2) there can be more than one hidden layer; (3) evolutionary algorithm is employed to improve the learning algorithm and training weights. In order to improve the expressive ability of neural networks, EPCNN utilizes random connection between neurons and more hidden layers to learn the knowledge stored within the historic time series data. The genetically evolved weights mitigate the well-known limitations of gradient descent algorithm. In addition, the activation function is defined using sin(x) function instead of sigmoid function. Three experiments were conducted which are explained as follows. In the first experiment, we compared the predicted value of the trained EPCNN model with the actual value to evaluate the prediction accuracy of the model. Second experiment studied the over fitting problem which occurred in neural network training by taking different number of neurons and layers. The third experiment compared the performance of the proposed EPCNN model with other models like BPN, TSK fuzzy system, multiple regression analysis and showed that EPCNN can provide a very accurate prediction of the stock price index for most of the data. Therefore, it is a very promising tool in forecasting of the financial time series data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号