首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

We theoretically investigate optical bistability/multistability for all optical switching signature in a hybrid semiconductor microcavity system comprising a quantum well and a Kerr nonlinear substrate. The system is essentially two optically coupled microcavities with one of the microcavity being driven by an external amplitude-modulated pump laser. We show that the switching between bistable and multistable behaviour is influenced by the modulated pump laser, Kerr nonlinearity and the optical coupling between the two microcavities. We further investigate the intracavity spectrum of quantum fluctuations which exhibit the well-known normal mode splitting (NMS). The NMS behaviour is also found to be influenced by the system parameters. These results demonstrate that the present hybrid nonlinear system can be used in designing sensitive optical devices.  相似文献   

2.
We theoretically analyse the optical and optomechanical nonlinearity present in a hybrid system consisting of a quantum dot(QD) coupled to an optomechanical cavity in the presence of a nonlinear Kerr medium, and show that this hybrid system can be used as an all optical switch. A high degree of control and tunability via the QD-cavity coupling strength, the Kerr and the optomechanical nonlinearity over the bistable behaviour shown by the mean intracavity optical field and the power transmission of the weak probe field can be achieved.The results obtained in this investigation has the potential to be used for designing efficient all-optical switch and high sensitive sensors for use in Telecom systems.  相似文献   

3.
The nonlinear response to applied fields of a four-level Y-type atomic system is investigated. The effect of laser intensity and quantum interference induced by spontaneous emission on optical bistability, optical multi-stability and Kerr nonlinearity is then discussed. It is found that the threshold of the optical bistability can substantially be reduced by the quantum interference. So, an enhanced Kerr nonlinearity with reduced absorption can be achieved.  相似文献   

4.
Abstract

We investigate a codirectional nonlinear coupler composed of two Kerr nonlinear waveguides. Unlike the conventional device, the linear coupling between the guides is supposed to be a variable function of the propagation distance. We calculate quantum statistical and dynamical properties of the Kerr nonlinear coupler with a coherent input and analyse the influence of coupling variation on oscillations in mean photon number. The possibility to control the switching characteristics and principal squeezing effect by adjusting the form of coupling function is shown.  相似文献   

5.
Abstract

We show how the measurement induced model of quantum computation proposed by Raussendorf and Briegel (2001, Phys. Rev. Letts., 86, 5188) can be adapted to a nonlinear optical interaction. This optical implementation requires a Kerr nonlinearity, a single photon source, a single photon detector and fast feed forward. Although nondeterministic optical quantum information proposals such as that suggested by KLM (2001, Nature, 409, 46) do not require a Kerr nonlinearity they do require complex reconfigurable optical networks. The proposal in this paper has the benefit of a single static optical layout with fixed device parameters, where the algorithm is defined by the final measurement procedure.  相似文献   

6.
Wang G  Lu H  Liu X  Gong Y  Wang L 《Applied optics》2011,50(27):5287-5290
We numerically investigate the optical bistability effect in the metal-insulator-metal waveguide with a nanodisk resonator containing a Kerr nonlinear medium. It is found that the increase of the refractive index, which is induced by enhancing the incident intensity, can cause a redshift for the resonance wavelength. The local resonant field excited in the nanodisk cavity can significantly increase the Kerr nonlinear effect. In addition, an obvious bistability loop is observed in the proposed structure. This nonlinear structure can find important applications for all-optical switching in highly integrated optical circuits.  相似文献   

7.
8.
Abstract

A passive optical system is proposed to explore the intensity quantum correlation of two twin beams to reduce the photon noise of one of them. It consists of using a semiconductor medium inside an optical cavity, which behaves as a nonlinear medium presenting a crossed Kerr effect. The intensity fluctuations of one beam modify the resonance condition of the cavity for the other beam and therefore its intensity. The medium is described microscopically within the two-level atom model. It is shown that, under typical experimental conditions, this system may produce noise reduction.  相似文献   

9.
Nonlinear optics based on bulk materials is the current technique of choice for quantum‐state generation and information processing. Scaling of nonlinear optical quantum devices is of significant interest to enable quantum devices with high performance. However, it is challenging to scale the nonlinear optical devices down to the nanoscale dimension due to relatively small nonlinear optical response of traditional bulk materials. Here, correlated photon pairs are generated in the nanometer scale using a nonlinear optical device for the first time. The approach uses spontaneous four‐wave mixing in a carbon nanotube film with extremely large Kerr‐nonlinearity (≈100 000 times larger than that of the widely used silica), which is achieved through careful control of the tube diameter during the carbon nanotube growth. Photon pairs with a coincidence to accidental ratio of 18 at the telecom wavelength of 1.5 µm are generated at room temperature in a ≈100 nm thick carbon nanotube film device, i.e., 1000 times thinner than the smallest existing devices. These results are promising for future integrated nonlinear quantum devices (e.g., quantum emission and processing devices).  相似文献   

10.
We propose a scheme to improve the phase sensitivity of a Mach–Zehnder interferometer. In this scheme, a Kerr nonlinear phase shifter is used to replace the traditional linear phase shifter. We consider two detection approaches: the direct homodyne detection (DHD) and the indirect homodyne detection (IHD). We find that the Kerr nonlinear phase shifter can improve the phase sensitivity of the interferometer, and the DHD is better than the IHD. In addition, we also find that the phase sensitivity of the Kerr nonlinear interferometer is robust against photon losses.  相似文献   

11.
Abstract

We investigate spatial power coupling and chaotic cross-talk when beams co-propagate in multimode optical fibres, specifically among four beams that belong to two weakly degenerate mode families. The nonlinear mechanism responsible for the power and phase coupling is the optical Kerr effect in fibres. The power of each of the modes is theoretically demonstrated to be spatially unstable and chaotically dependent on launch conditions. It is shown that the spatial instabilities and irregular energy exchange occur over broad operating conditions as long as the system deviates from its spatial steady states.  相似文献   

12.
We demonstrate microscopic time-resolved two-dimensional (2D) imaging that is based on a femtosecond amplifying optical Kerr gate (fs-amp OKG). The contribution of the optical nonlinear effects to the transverse imaging performance and the limit of the transverse resolving power are investigated. The optical Kerr effect in the excited state with amplification, used in the fs-amp OKG, does not deteriorate the quality of the time-resolved image at transverse resolutions up to at least 5.5 microm. We obtain a femtosecond-time-resolved 2D image of a microscopic object with a transverse resolution of 1.7 microm.  相似文献   

13.
In this paper, we investigate the interaction between a vee-type three-level atom and a single mode of the electromagnetic field in the presence of a nonlinear Kerr-like medium and an intensity-dependent coupling. We have elucidated the system by a nonlinear Hamiltonian constructed from the standard Jaynes–Cummings model by deforming the field operators and adding some nonlinear terms. Using the initial conditions that the atom is prepared in an excited state and the field is in a coherent state, the state vector of the entire system is determined analytically. The time evolution of nonclassical properties such as Mandel Q, quantum entanglement and position-momentum uncertainty relation (squeezing) of the field are investigated. The quasiprobability distributions are also computed for the resultant state. The effects of the detuning parameters, generalized Kerr medium and intensity-dependent coupling on the previous nonclassicality signs are analysed, in detail.  相似文献   

14.
van Manen HJ  Otto C 《Nano letters》2007,7(6):1631-1636
We have overcome the traditional incompatibility of Raman microscopy with fluorescence microscopy by exploiting the optical properties of semiconductor fluorescent quantum dots (QDs). Here we present a hybrid Raman fluorescence spectral imaging approach for single-cell microscopy applications. We show that resonant Raman imaging of flavocytochrome b558 at 413.1 nm excitation in QD-labeled neutrophilic granulocytes or nonresonant Raman imaging of proteins and lipids at 647.1 nm excitation in QD-labeled macrophages can be integrated with linear one-photon excitation and nonlinear continuous-wave two-photon excitation fluorescence microscopy of QDs, respectively. The enhanced information content of these two hybrid Raman fluorescence methods provides new multiplexing possibilities for single-cell optical microscopy and intracellular chemical analysis.  相似文献   

15.
Ozaktas HM  Goodman JW 《Applied optics》1994,33(14):2968-2987
We present a textbooklike treatment of hybrid systems employing both optical and electrical interconnections. We investigate how these two different interconnection media can be used in conjunction to realize a system not possible with any alone. More specifically, we determine the optimal mix of optical and normally conducting interconnections maximizing a given figure-of-merit function. We find that optical interconnections have relatively little to offer if the optical paths are constrained to lie on a plane (such as in an integrated optics system). However, if optical paths are permitted to leave the plane, they may enable considerable increase in performance. In any event the prize in terms of performance is accompanied by a penalty in terms of system power and/or size.  相似文献   

16.
We study phase control of linear and nonlinear optical responses in a three-level atomic system in V-configuration exhibiting spontaneously generated coherence (SGC). Because of the SGC effect, the strength of Kerr nonlinearity strongly depends upon the relative phase between the probe and control fields as well as the absorptions. By controlling the relative phase appropriately, large Kerr nonlinearity can be achieved with canceled linear and nonlinear absorptions. Combining with the phase modulation, the strict decay condition of spontaneous decay rates is not needed.  相似文献   

17.
Ja YH 《Applied optics》1994,33(30):7013-7015
A special property of a type 3 optical fiber ring resonator with a 3 × 3 planar coupler in which the circulating intensity is independent of the phase change of the ring resonator can be used to eliminate unwanted Kerr bistability. At the same time the device can be used as a two-channel frequency division multiplexer or demultiplexer or a switch. Another method for the elimination of Kerr bistability is the use of two fibers whose nonlinear refractive-index coefficients have opposite signs to build the ring resonator.  相似文献   

18.
We present a theoretical study for the Kerr nonlinearity of a four-level double-V-type quantum system near a two-dimensional array of metal-coated dielectric nanospheres. In the quantum system under study one V-type transition is influenced by the interaction with surface plasmons while the other V-type transition interacts with free-space vacuum. The quantum system interacts with a linearly polarized weak laser field that couples the lowest state with the upper states in the free-space transitions. We show that the Kerr nonlinearity is strongly influenced by the presence of the plasmonic nanostructure and is particularly sensitive to the distance between the quantum system and the plasmonic nanostructure.  相似文献   

19.
The integration of organic and inorganic semiconductors on the nanoscale offers the possibility of developing new photonic devices that combine the best features of these two distinct classes of material. Such devices could, for example, benefit from the large oscillator strengths found in organic materials and the nonlinear optical properties of inorganic species. Here we describe a novel hybrid organic/inorganic nanocomposite in which alternating monolayers of J-aggregates of cyanine dye and crystalline semiconductor quantum dots are grown by a layer-by-layer self-assembly technique. We demonstrate near-field photon-mediated coupling of vastly dissimilar optical excitations in the two materials that can reach efficiencies of up to 98% at room temperature. By varying the size of the quantum dots and thus tuning their optical resonance for absorption and emission, we also show how the ability of J-aggregates to harvest light can be harnessed to increase the effective absorption cross section of the quantum dots by up to a factor of ten. Combining organic and inorganic semiconductors in this way could lead to novel nanoscale designs for light-emitting, photovoltaic and sensor applications.  相似文献   

20.
We discuss the linear and nonlinear optical properties of organic-inorganic nanostructures (quantum wells and superlattices) brought about by resonance interactions between Frenkel excitons in organic QWs and Wannier-Mott excitons in semiconductor QWs. We show that such a coupling (Coulomb dipole-dipole at an interface and through the cavity photons in a microcavity) is responsible for the appearance of mixed Frenkel-Wannier excitations. We demonstrate that the new hybrid states and their dispersion curves can be tailored to engineer the enhancement of resonant optical nonlinearity, fluorescence efficiency and relaxation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号