首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Superplastic behavior of a solution treated and friction stir processed (FSP) AZ91C alloy is studied. These studies are conducted in the temperature range of 300–375 °C and strain rates (SRs) in the range of 1 × 10?4–3 × 10?3 s?1. Microstructural stability of the FSP alloy is also studied in comparison to the AZ31, AZ61, and AZ91 alloys processed by various routes. High SR sensitivity in the range of 0.33–0.39 and grain size stability till 350 °C is observed for the FSP alloy. The FSP AZ91C alloy showed better thermal stability in comparison to AZ31 and AZ61 alloys. Kinetics of superplastic deformation of the FSP alloy is found to be slower as compared to AZ31 and AZ61 alloys processed by various routes, which is due to the presence of significant amount of second phase precipitates, such as, β-Mg17(Al,Zn)12, Mg2Si, and Al8Mn5 in the FSP alloy. However, these precipitates contributed for better thermal stability of the microstructure of FSP AZ91C alloy.  相似文献   

2.
Dynamic strain ageing (DSA) is observed in the tensile behaviour of 20MnMoNi55. The DSA phenomenon contributes extra hardening for a certain combination of straining rate and temperature. At temperature ranging from 200°C to 400°C and a straining rate of 10?4–10?2?s?1, alloy 20MnMoNi55 exhibits DSA. In the present work, DSA stresses are calibrated as a function of strain, strain-rate and temperature. Modification of the Johnson–Cook material model by incorporating DSA has been attempted. The modified flow stress model is used in finite element computation to simulate the material behaviour for a wide range of temperature and strain-rates including the DSA regime. The simulated results are in good agreement with the experimental results.  相似文献   

3.
In this study, the microstructure of AA 2195 T81 metal-cutting chips formed during a turning operation were characterized using microscopy and diffraction techniques. At a constant strain of 2, the resulting strain rate imposed on the metal was varied from 0.8 × 104 to 2.6 × 105 s?1. At strain rate of 0.8 × 104 s?1, the resulting microstructure contained regions of 100 nm ultrafine grains. At the highest strain rate of 2.6 × 105 s?1, 150–200 nm ultrafine grains were observed plus overaged precipitates. The grain size increment and appearance of overaged precipitates with the higher strain rate is conjectured to be a result of temperature increment and not of direct strain rate.  相似文献   

4.
The effects of different solidification rates after pouring on the microstructures,microsegregation and mechanical properties of cast superalloy K417 G were investigated.Scheil-model was applied to calculate the temperature range of solidification.The casting mould with different casting runners was designed to obtain three different cooling rates.The microstructures were observed and the microsegregation was investigated.Also,high temperature tensile test was performed at 900?C and stress rupture test was performed at 950?C with the stress of 235 MPa.The results showed that the secondary dendrite arm spacing,microsegregation,the size and volume fraction of γ'phase and the size of γ/γ'eutectic increased with decreasing cooling rate,but the volume fraction of γ/γ' eutectic decreased.In the cooling rate range of 1.42?C s~(-1)–0.84?C s~(-1),the cast micro-porosities and carbides varied little,while the volume fraction and size of phase and γ/γ' eutectic played a decisive role on mechanical properties.The specimen with the slowest cooling rate of 0.84?C s~(-1) showed the best comprehensive mechanical properties.  相似文献   

5.
Abstract

The characteristics of serrated yielding (the Portevin–Le Chatelier effect) in a Nb–V dual phase steel have been studied in the temperature range 85–210°C at strain rates between 1·2 × 10?5 and 1·2 × 10?2 s?1. Serrated yielding was found to initiate only after a critical strain ?c was reached. The strain between two successive serrations ??s increases almost linearly with strain, while the stress drop ?σc increases with strain up to ?σmax, then decreases. The exponent β in the mobile dislocation density–plastic strain relationship (ρm= ?β) is 1·09 in the temperature range 85–140°C and 1·34 in the temperature range 140–210°C. The results also indicate that in the same temperature ranges there are two values of activation energy for type A serrations, i.e. 79 and 119 kJ mol?1 respectively. The results are discussed in terms of substitutional–interstitial solute atom interaction and changes of concentration of interstitial atoms.

MST/934  相似文献   

6.
Abstract

Tensile specimens of superplastic forming grade IN718 superalloy, containing banded microstructure in the as received state, were deformed at high temperatures T to investigate the stress σ versus strain rate ? · behaviour, the nature of the stress versus strain ? curves, ductility, and microstructure upon failure. The log σ–log ? · plot for the ? · range ~5 × 10-6–3 × 10-2 s-1 at T = 1173–1248 K exhibited a strain rate sensitivity index m = 0·62 at low strain rates and m = 0·26 at high strain rates, representing region II and III behaviour, respectively. The activation energies were estimated to be 308 and 353 kJ mol-1, respectively. All the σ–? curves, obtained at ? · = 1 × 10-4 s-1 for the temperature range 1173–1273 K, and at T = 1198 K for the strain rate range 1 × 10-4–1 × 10-2 s-1, exhibited initial flow hardening, followed by flow softening. The microstructures revealed dynamic recrystallisation, grain growth, cavitation, and a variation in the amount of second phase particles. Grain growth and cavitation were found to increase with temperature in region II. Excessive grain growth at 1273 K led to the elimination of region II. Grain growth and cavitation were both found to be less pronounced as the strain rate increased in region III.  相似文献   

7.
Strain-induced abnormal grain growth was observed along the gage length during high-temperature uniaxial tensile testing of rolled Mg–Al–Zn (AZ31) sheet. Effective strain and strain rates in biaxial forming of AZ31 sheets also affected the nature of grain growth in the formed sheet. For the uniaxial testing done at 400 °C and a strain rate of 10?1 s?1, abnormal grain growth was prevalent in the gage sections that experienced true strain values between 0.2 and 1.0. Biaxial forming of AZ31 at 5 × 10?2 s?1 and 400 °C also exhibited abnormal grain growth at the cross sections which experienced a true strain of 1.7. Uniaxially tested sample at 400 °C and a strain rate of 10?3 s?1, however, showed no abnormal grain growth in the gage sections which experienced true local strain values ranging from 1.0 to 2.3. The normalized flow stress versus temperature and grain size compensated strain rate plot showed that the deformation kinetics of the current AZ31 alloy was similar to that reported in the literature for AZ31 alloys. Orientation image microscopy (OIM) was used to study the texture evolution, grain size, and grain boundary misorientation during uniaxial and biaxial forming. Influence of deformation parameters, namely strain rate, strain, and temperature on grain growth and refinement were discussed with the help of OIM results.  相似文献   

8.
Abstract

Compression testing was used to explore the influence of strain rate on the formation of deformation induced ferrite. Samples of a 0·4%C–1·4%Mn plain C–Mn steel were heated to 1225°C, cooled to test temperatures in the range 1100–610°C, and then given a true strain of 0·6, at strain rates of3 × 10?2, 3 × 10?3, and 3 × 10?4 S?1. At the lowest strain rate it wasfound that the strain to peak stress decreased with decreasing temperature in the range 750–610°C. This behaviour is related to the formation of thin films of the softer deformation induced ferrite at the γ grain boundaries at the higher temperatures, and spheroidisation at the lower temperatures. More normal stress–strain curves were observed at the higher strain rates, as raising the strain rate prevents the formation of deformation induced ferrite and delays spheroidisation. The strain rate was also found to have an important influence on the extent of recovery in the deformation induced ferrite; the lowest strain rate enabling full recovery and or recrystallisation to occur, thus keeping the film soft. This behaviour is shown to account for the poor hot tensile ductility at the lowest strain rates. Raising the strain rate in this temperature range improves the ductility because work hardening takes place, raising the strength of the ferrite closer to that of the y, thus preventing strain concentration from occurring.

MST/1934  相似文献   

9.
A forsterite-based glass ceramic material has been developed from potassium feldspar for low temperature co-fired ceramics (LTCC). The crystalline phases and microstructure of forsterite-based glass ceramics were investigated using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The results show only forsterite was formed in temperature range 900–1,050 °C, and sapphirine was formed in temperature range 1,080–1,100 °C. The glass compact could be well densified at 950 °C, and full densification samples were obtained in temperature range 1,000–1,050 °C. The physical properties including dielectric properties, bending strength and thermal expansion of the specimens were also evaluated. The dielectric constants are in the range 7.00–8.25 and dielectric loss is below 0.01 in the frequency range 1–10 MHz. The specimens obtained in temperature range 950–1,100 °C are of high bending strength (69–106 MPa). The linear coefficient of thermal expansion of the specimen sintered at 1,080 °C is 9.76 × 10?6 K?1. All of these qualify the forsterite-based glass ceramic for further investigation as a candidate suitable for applications in LTCC field.  相似文献   

10.
An experimental investigation on an S-tapered photonic crystal fiber interferometer is presented in this paper. The sensor exhibits highly surrounding refractive index sensitive, which is 4.7 × 10?3 RIU (refractive index unit) in 1.33–1.39 and 1.45 × 10?3 RIU in 1.39–1.44 commensurable with general sensors. Attribute to the S-shape’s distortion, red shifts are measured in axial strain test. In addition, insensitivity (4.3 pm/°C) in low temperature and sensitivity (22.4 pm/°C) in high temperature are confirmed by experiments. These properties combined with a simple fabrication process and a durable structure.  相似文献   

11.
The superplastic deformation characteristics of coarse-grained Ti40 alloy have been studied in the temperature and strain rate range of 760–880°C and 5?×?10?4 to 1?×?10?2?s?1, respectively. The alloy exhibited good superplasticity in all test conditions except at 760°C and strain rate higher than 5?×?10?3?s?1, with the maximum elongation of 436% at 840°C, 1?×?10?3?s?1. The activation energy value was found to be close to the self-diffusion activation energy of Ti40 alloy, suggesting that the rate controlling mechanism was lattice diffusion. The coarse grain was elongated and refined which can be attributed to the occurrence of dynamic recovery and continuous dynamic recrystallisation. These processes were promoted by the subgrain formation and evolution, resulting in the good superplasticity of Ti40 alloy with coarse grains.  相似文献   

12.
Abstract

The microstructure and mechanical properties of a γ-TiAl alloy (Ti–46.5Al–3Nb–2Cr–0.2W, in at.-%) were studied in two conditions: (a) after conventional forging in the +γ phase field and (b) after subsequent isothermal forging in the 2+γ phase field. Tensile tests were conducted in the temperature range 800–1000°C and strain rate range of 10-3–10-1 s-1. The microstructure of the alloy in condition 1 was non-homogeneous consisting of about 90 vol.-% of small γ grains (grain size of 3 to 20 µm) and 10 vol.-% of coarse grains or lamellar regions. The alloy in this condition showed a brittle to ductile transition at about 950°C and extensive cavitation during deformation above the transition temperature. The microstructure in condition 2 was much more uniform and finer, and the transition temperature was decreased to 850°C. The alloy in condition 2 showed better deformability and cavitation resistance than that in condition 1 and superplastic behaviour at temperatures 900–1000°C.  相似文献   

13.
The effects of adding calcium hydroxide (Ca(OH)2) to a copper–CF (30 %) composite (Cu–CF(30 %)) were studied. After sintering at 700 °C, precipitates of calcium oxide (CaO) were included in the copper matrix. When less than 10 % of Ca(OH)2 was added, the thermal conductivity was similar to or higher than the reference composite Cu–CF(30 %). A thermal conductivity of 322 W m?1 K?1 was measured for the Cu–Ca(OH)2(3 %)–CF(30 %) composite. The effects of heat treatment (400, 600, and 1000 °C during 24 h) on the composite Cu–Ca(OH)2(3 %)–CF(30 %) were studied. At the lower annealing temperature, CaO inside the matrix migrated to the interface of the copper matrix and the CF. At 1000 °C, the formation of the interphase calcium carbide (CaC2) at the interface of the copper and CFs was highlighted by TEM observations. Carbide formation at the interface led to a decrease in both thermal conductivity (around 270 W m?1 K?1) and the coefficient of thermal expansion (CTE (10.1 × 10?6 K?1)).  相似文献   

14.
Abstract

The effect of nitrogen content on the dynamic strain ageing (DSA) behaviour of type 316LN austenitic stainless steel has been studied. The nitrogen content was varied from 0·07 to 0·22 wt-%. The tensile tests were carried out over a temperature range of 300–1123 K and at three strain rates in the range 3×10?3–3×10?5 s?1. Serration was observed in the load elongation curves in the intermediate test temperature range and has been considered due to DSA phenomenon. The critical strain to onset of serrated flow increased with increase in nitrogen content and strain rate. The temperature for onset of DSA and the temperature of disappearance of DSA were found to increase with the increase in nitrogen content. The variations in tensile strength and work hardening rate of the steel with temperature exhibit peak values in the intermediate temperature range and have been attributed due to DSA phenomenon. The activation energy for DSA, estimated based on the temperature and strain rate dependences of the strain to onset of serrated flow, was found to increase from 111 to 218 kJ mol?1 with the increase in nitrogen content from 0·07 to 0·22 wt-% and the increase has been attributed to the possible enhanced interaction of the DSA causing interstitial nitrogen with substitutional chromium.  相似文献   

15.
Abstract

The precipitation behaviour of β and γ′ in a low thermal expansion superalloy IN783 was investigated. It was demonstrated that coarse γ′ precipitates do form during β aging at 845°C. During aging at lower temperatures, not only fine γ′ particles are formed, the coarse γ′ particles also change from spherical to cuboidal. Therefore, a bimodal distribution of γ′ is formed in the matrix after standard aging treatment. The formation of β consumes Al atoms, which constrains the formation of coarse γ′ in the zone around β during aging at 845°C. During γ′ aging, a fine γ′ precipitating zone is formed around β. Prolonging the β aging duration markedly promotes the formation of β at grain boundaries and in the matrix, significantly enlarges the fine γ′ precipitating zone and influences the precipitation of coarse γ′.  相似文献   

16.
The hot workability of SiCp/2024 Al composite was explored by conducting hot compression simulation experiments on Gleeble-3500 under temperatures of 300–500 °C and strain rates of 10?3–1 s?1. Constitutive equation was developed through hyperbolic sine function, and the activation energy was calculated to be 151 kJ mol?1. The hot processing maps referring to dynamic material model were drawn in a true strain range from ?0.2 to ?0.8. At the strain of ?0.8, the recommended regions in processing map contained two domains: superplastic domain (500 °C, 10?3 s?1) with an efficiency of about 0.72 and DRX domain (500°C, 1 s?1) with an efficiency of about 0.45. Together with macrostructure and microstructure observations, it was suggested to remove the DRX region.  相似文献   

17.
Trace amount (0.3?wt%) of scandium is added to Al–5.6Mg–0.7Mn alloy to form uniformly distributed Al3Sc precipitates for producing a fine-grained and stable microstructure at high temperature through cross-channel extrusion process. Superplasticity and hot workability of the Sc-containing Al–5.6Mg–0.7Mn alloy, after extrusion, are also examined. The result indicates that Al–5.6Mg–0.7Mn alloys with and without 0.3?wt% Sc after extrusion of six passes at 300°C, fine-grained structures were observed with grain sizes of 1–2?µm and improvement of mechanical properties. Furthermore, Al3Sc phase can effectively retard recrystallization to increase the thermal stability and remain equiaxed. The elongation of Al–5.6Mg–0.7Mn alloy with Sc addition to failure is extended to 873% maximum at high temperature of 450°C at strain rate of 1?×?10?1?s?1after six passes in the CCEP.  相似文献   

18.
The hot deformation of cast TXA321 alloy has been studied in the temperature range 300–500 °C and in the strain rate range 0.0003–10 s?1 by developing a processing map. The map exhibited four domains in the temperature and strain rate ranges: (1) 300–325 °C and 0.0003–0.001 s?1, (2) 325–430 °C and 0.001–0.04 s?1, (3) 430–500 °C and 0.01–0.5 s?1, and (4) 430–500 °C and 0.0003–0.002 s?1. The first three domains represent dynamic recrystallization, resulting in finer grain sizes in the first two domains and coarser in the third domain. In the fourth domain, the alloy exhibited grain boundary sliding resulting in intercrystalline cracking in tension and is not useful for its hot working. Two regimes of flow instability were identified at higher strain rates, one at temperatures <380 °C and the other at >480 °C.  相似文献   

19.
The superimposition of time-dependent damage on fatigue, otherwise, known as creep-fatigue interaction (CFI), significantly affect the fatigue life of power plant boiler components. IN740H is a candidate material for advanced ultra-supercritical (A-USC) boilers components. The creep-fatigue interaction of alloy IN740H was studied at 760°C, by conducting low cycle fatigue (LCF) at a strain amplitude (Δ?t/2) value of 0.4% and holding at peak strain in tension, compression and both for 0, 1, 5, 10 and 30?min duration. Though hold time adversely affects fatigue life, tensile hold is the most damaging of all three hold modes. The reason behind maximum damage with tensile hold is grain boundary cavitations and coalescence of cavities leading to internal cracks formation at grain boundaries.  相似文献   

20.
Hot deformation behavior of as-cast TX32 (Mg–3Sn–2Ca) alloy has been studied in uniaxial compression in the temperature and strain rate ranges of 300–500 °C and 0.0003–10 s?1 with a view to characterize the evolution of microstructure and texture. On the basis of the temperature and strain rate dependence of flow stress, a processing map has been developed and the crystallographic orientation information on the deformed specimens has been obtained from electron back scatter diffraction micro-texture analysis. The processing map revealed two domains of dynamic recrystallization in the temperature and strain rate ranges of (1) 300–350 °C and 0.0003–0.001 s?1 and (2) 390–500 °C and 0.005–0.6 s?1. Specimens deformed at peak in Domain 1 exhibited maximum intensity of basal poles located at about 35–45° to the compression axis while those deformed at peak in Domain 2 showed near-random texture. Schmid factor analysis of different slip systems operating in the two domains suggests that basal + prismatic slip causes the basal texture in Domain 1 while second-order pyramidal slip randomizes the texture in Domain 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号