首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将模型预测控制方法应用于高超声速飞行器纵向通道的姿态控制中。利用模型预测的在线滚动优化推导系统的最优控制律,得到高超声速飞行器纵向通道的姿态控制器。仿真结果表明,在气动参数大范围摄动的情况下,控制系统能够很好地跟踪期望攻角,并且具有较强的鲁棒性。  相似文献   

2.
针对高超声速飞行器严重耦合特性给控制系统设计带来的问题,从简化控制系统设计的角度出发对飞行器总体提出通道间耦合小的优化设计要求。以气动舵控制的翼身组合体外形高超声速飞行器为研究对象,引入操纵耦合力矩影响作用的度量-操纵耦合度定义;结合工程估算与CFD计算方法建立操纵耦合度与飞行器总体外形参数的表征关系;采用多目标粒子群算法,求解以总体外形参数为决策变量,以各通道操纵耦合度最小为目标函数的优化问题,从而确定可降低气动舵操纵耦合的高超飞行器总体随控优化策略。算例分析表明,提出的高超声速飞行器总体随控优化方法可有效改善气动舵控制高超飞行器的操纵耦合特性,对控制系统设计具有重要意义。  相似文献   

3.
针对高超声速飞行器再入过程中的强耦合和干扰所带来的非匹配不确定控制问题,提出一种新型自适应迭代学习控制系统的设计方法。研究结合采用先进控制方法与迭代学习控制策略。首先给出面向控制的高超声速飞行器姿态模型。然后针对一类非线性系统,提出一种结合滑模控制的新型迭代学习控制系统设计方法,并将其应用到所提出的面向控制的姿态模型。最后应用Lyapunov泛函来证明闭环系统跟踪误差的收敛性和变量的有界性。仿真展示所提方法能使飞行器快速稳定地跟踪指令,对比传统滑模控制说明本方法具有针对气动不确定项和干扰项的强鲁棒性。  相似文献   

4.
为保证超燃冲压发动机的良好进气环境,需要对高超声速巡航飞行器进行精细姿态控制,但弹性振动大大提高了精细姿态控制的设计难度。以高超声速巡航飞行器的纵向通道为例,文章分析弹性振动对飞行控制系统的影响,建立高超声速巡航飞行器的弹性模型,将精细姿态控制问题简化为超燃冲压发动机进气口当地攻角的精细控制问题,考虑机体/发动机耦合和气动热造成了气动参数和模态参数大范围摄动问题,基于H∞理论设计鲁棒控制系统。仿真表明,在考虑测量噪声、舵机非线性、参数大范围摄动的情况下仍然能够很好地跟踪刚体攻角,抑制弹性攻角,保证进气口当地攻角±0.6°的控制精度,满足高超声速飞行器精细姿态控制的要求。  相似文献   

5.
为解决输入饱和、参数不确定和气动弹性影响下的高超声速飞行器控制问题,提出一种基于反步法的非线性鲁棒自适应控制方法.针对高超声速飞行器纵向通道控制问题,将其分解为速度子系统和高度子系统分别进行控制器设计.首先,基于Lyapunov稳定原理设计了参数估计自适应律来处理输入受限情况的速度跟踪控制问题,即使出现推力饱和也能保证系统稳定性;然后,采用自适应反步法对高度子系统进行分层递推设计,通过引入自适应律对不确定参数进行在线实时估计,以提高控制器的鲁棒性,并且实现了高度的稳定跟踪;同时利用微分跟踪器来获取虚拟控制指令导数;采用鸭翼与升降舵联动控制策略,通过选取合适的联动控制增益可以同时消除控制面与升力耦合带来的非最小相位特性和控制输入对一阶弹性模态的激励;最后,基于LaSalle不变集原理证明了闭环控制系统的稳定性.仿真结果表明,所设计的控制器能够有效处理弹性高超声速飞行器的气动参数不确定和控制饱和问题,并且具有良好的闭环跟踪性能.  相似文献   

6.
为了减小高超声速飞行器飞/发耦合效应对自身的影响,开展了高超声速飞行器飞/发一体化控制研究。建立面向控制的高超声速飞行器飞/发一体化数学模型。分别采用非线性动态逆控制与增量非线性动态逆控制方法,设计了姿态慢变外回路、角速率快变内回路控制算法。基于包含高超声速飞行器飞/发耦合特性的在线本体模型,以操纵交联的形式设计了高超声速飞行器姿态与发动机的耦合控制方案。在非线性动态逆控制器中引入参考模型、误差控制、在线估计等模块,保证了高超声速飞行器的飞行品质和鲁棒性要求。仿真实验结果表明,采用了非线性动态逆控制设计的飞/发耦合控制方案达到了预期的控制性能。  相似文献   

7.
吸气式高超声速飞行器飞行过程中舵偏不能过大,攻角、角速率等飞行状态必须满足约束,这既是超燃冲压发动机工作条件的要求,也是为了减小飞行器状态散布。针对吸气式高超声速飞行器进行高度控制时,飞行器状态和舵偏必须满足约束的实际问题,引入指令调节器进行高度回路设计。基于PI+LQ方法设计过载控制器,利用高度回路的比例-微分产生过载信号,过载信号经过指令调节器生成调节指令,过载控制器跟踪该指令完成高度跟踪。仿真结果表明,该方法设计的控制系统在阵风干扰情况下能够满足状态约束并实现快速跟踪。  相似文献   

8.
高超声速飞行器有限时间LPV滑模控制器设计   总被引:1,自引:1,他引:0  
高超声速飞行器在机动飞行时易受到外界扰动,若采用传统的状态反馈控制方法,闭环控制系统极易引起振荡,无法满足机动飞行指令信号跟踪的精度要求;若采用传统的滑模控制方法,由于系统存在奇异值的问题,且计算过程较为复杂,控制系统不易于实现.针对上述问题,考虑高速机动飞行控制实际要求,提出了一种基于有限时间时变滑模的线性变参数(LPV)控制器设计方法并应用于高超声速飞行控制.首先不考虑外界扰动,通过传统的状态反馈控制方法使系统保持稳定.然后,在扰动存在的情况下,通过选取一个特殊的滑动函数,设计有限时间时变滑模控制律.为减小系统的抖振现象,引入饱和函数来替换控制律中的符号函数.经理论推导证明了闭环系统中的所有信号都是有界的,并且可以在预定的时间内将跟踪误差控制在零点的一个很小的邻域范围内.仿真验证结果表明,高超声速飞行器机动飞行条件下的状态量可在有限时间内稳定跟踪参考指令信号,且有效地抑制了闭环系统的振荡现象,验证了本方法所设计控制器的有效性.  相似文献   

9.
为了解决滑翔式高超声速飞行器大攻角侧向机动时高精度高稳定性的控制要求,针对该过程中存在的多个不确定因素和控制耦合,对耦合特性进行分析,建立面向控制的滑翔式高超声速飞行器动力学模型。利用H∞回路成形设计方法设计了控制器,并提出了一种期望传递函数的选取方法。最后对所设计的控制系统进行三通道联合仿真。结果表明该控制系统满足滑翔式高超声速飞行器大攻角侧向机动的控制要求。  相似文献   

10.
吸气式高超声速飞行器控制的最新研究进展   总被引:4,自引:3,他引:1  
随着超燃冲压发动机技术的快速发展,吸气式高超声速飞行器正受到世界范围内的高度关注,而其控制系统的设计则是重中之重.首先简要回顾了吸气式高超声速飞行器建模的发展,表明了对其进行控制器设计的复杂性;然后着重阐述了几种广泛应用于吸气式高超声速飞行器的控制方法:基于线性化模型的控制方法、反向递推法、T-S模糊控制方法、自适应控制和滑模变结构控制;最后指出了在控制器设计环节需要考虑的若干问题,例如:执行机构的非线性、容错控制、多目标控制、切换控制等,同时也是今后吸气式高超声速飞行器控制系统设计的研究方向.  相似文献   

11.
针对吸气式高超声速飞行器进气道不起动引起飞行器气动特性大范围变化,从而导致响应出现大幅振荡甚至控制系统失稳的问题,提出了一种考虑进气道不起动影响的模型参考自适应控制方法。该方法首先针对进气道起动时的模型,设计了基于LQR-PI方法的姿态控制系统,并以此作为进气道不起动时的参考模型;当进气道不起动时,在LQR-PI基准控制器的基础上增加模型参考自适应控制项,通过跟踪参考模型以提高系统对进气道不起动引起模型偏差的鲁棒性,在进气道出现不起动的情况下能快速稳定姿态,为进气道再起动提供条件。最后对所提方法进行了数字仿真,结果表明,系统在进气道出现不起动时能够快速跟踪控制指令,且稳态误差趋于零,验证了所提方法的有效性。  相似文献   

12.
吸气式高超声速飞行器控制系统设计   总被引:1,自引:0,他引:1  
为实现吸气式高超声速飞行器的姿态控制,需要对其复杂的气动特性进行分析,并完成控制系统的设计.通过研究高超声速飞行器风洞实验数据,分析其气动特性,即升力系数、升阻比和纵向总力矩系数在不同Ma时随攻角变化的规律进而进一步计算出纵向动力系数,研究其纵向动态稳定性.最后,基于气动分析设计了攻角反馈控制和法向过载控制两种不同的控制回路,分别计算出其时域和频域特性.实验结果表明:吸气式高超声速飞行器既能满足纵向动态稳定性,又具有良好的控制性能.  相似文献   

13.
提供了一种在高超声速飞行器姿态运动数学模型具有强耦合、不确定性以及非线性的特点的情况下,依然能够实现对其姿态运动进行高精度控制的控制器设计方法。该方法首先采用预测滤波器对系统的不确定性进行估计和补偿,通过对系统的不确定性进行补偿,大大减小了模型误差,提高了控制精度;其次在此基础上采用反馈线性化的方法对补偿后的系统进行解耦,并对解耦后的系统设计变结构控制器。通过仿真表明文中所设计的方法确实能够实现高超声速飞行器的高精度姿态控制。  相似文献   

14.
高超声速飞行器动态输出反馈最优跟踪控制   总被引:6,自引:3,他引:3  
采用非线性前馈加线性反馈控制结构,利用伴随法生成最优上升轨迹,设计输出反馈控制律与输出跟踪控制律,证明其有条件渐近稳定;实现高超声速飞行器上升段的最优跟踪控制,将系统能观测和不能观测部分分离,降低了对传感测量系统的要求.仿真结果表明,该组合方法能够实现高超声速飞行器的最大能量爬升,同时能够实现对最优上升轨迹的稳定跟踪.  相似文献   

15.
针对某升力体高超声速飞行器在超燃冲压发动机工作前后的姿态控制问题,分析了发动机进气道关闭、打开和发动机点火3种状态下的机体气动特性。建立了典型的升力体高超声速飞行器的数学模型。采用分数阶控制器的结构和参数配置方法,设计了飞行器的法向过载控制器。控制器内回路采用极点配置法以改善控制系统的动态特性;外回路采用分数阶控制器来配置控制参数以满足飞行器高精度的姿态控制要求。仿真结果表明3种状态下升力体高超声速飞行器机体姿态均控制在平衡位置的±1°动态范围内。  相似文献   

16.
针对传统直气复合控制系统侧喷发动机开启策略对先验数据的依赖性较强,导致鲁棒性较差的问题,提出基于稳定性判据的直气复合控制方法.根据高超声速飞行器模型推导稳定性判据,按照该判据预测飞行器的稳定状态,当飞行器即将失稳时开启侧喷发动机,及时增加直接力矩,控制飞行器稳定.该方法不依赖先验数据,可满足飞行器高马赫数下的稳定飞行和高机动性要求.通过建立全状态六自由度高超声速模型进行仿真研究,结果表明所提出的控制器具有较好的抗干扰能力,比传统控制策略鲁棒性更强.  相似文献   

17.
放宽静稳定性可以解决高超声速飞行器在高超声速飞行时正稳定裕度过大的问题,但是会造成亚声速飞行阶段飞行器稳定性下降。针对高超声速飞行器在亚声速飞行时稳定性不足的问题,采用经典反馈控制和LQ最优控制方法,设计了2种不同的增稳控制系统并应用于放宽静稳定后的高超声速飞行器。数值仿真结果表明,LQ最优控制增稳系统较经典反馈增稳控制系统具有更好的动态增稳效果和更强的鲁棒性能,因此LQ最优控制下的增稳系统拥有更好的增稳效果和更理想的抗鲁棒特性。  相似文献   

18.
针对高超声速飞行器具有高机动性难以对其飞行轨迹进行预测的问题,提出一种基于高超声速目标运动特性的攻击意图预测方法。首先分析了高超声速飞行器的3种运动特性:飞行器运动状态的马尔可夫过程模型、航迹偏航角和可达区域; 然后采用动态贝叶斯网络的推理方法对高超声速飞行器与攻击目标之间的攻击关系进行推理,以实现攻击意图预测; 最后进行了仿真实验。实验结果表明, 基于运动特性的动态贝叶斯网络能够对攻击意图进行预测,提出的意图预测方法具有良好的实时性和有效性。  相似文献   

19.
针对火箭基组合循环(RBCC)高超声速飞行器上升段轨迹设计所具有的动力系统工作模态复杂、推力与飞行状态存在强耦合、模型强非线性且存在多种复杂约束限制等典型特征,设计了一种基于序列凸优化的RBCC动力上升段轨迹快速优化方法。针对攻角控制系统是否存在二阶滞后情况,分别建立了适用于RBCC高超声速飞行器上升段轨迹优化的数学模型。基于凸优化理论对原优化模型进行凸化和离散化处理,进而设计了改进的轨迹优化求解策略。以末端机械能最大为优化指标,针对攻角控制系统存在/不存在二阶滞后的情况分别进行了上升段轨迹优化仿真。结果表明,所构建模型和轨迹优化方法可以快速、有效地完成RBCC高超声速飞行器上升段轨迹优化,优化结果符合RBCC动力系统工作特点,且可为RBCC动力运用和攻角控制系统设计提供参考。  相似文献   

20.
针对滑翔式高超声速飞行器飞行环境复杂,临近空间再入段俯仰、偏航和滚转通道之间存在强耦合和参数大范围不确定性的特点,研究了飞行器双环结构协调解耦控制系统设计。首先建立了飞行器面向控制的动力学模型,对模型中的耦合项进行分析;然后将基于慢、快变量的双环控制与协调解耦控制相结合进行控制系统的设计,给出了解耦增益选取的一般方法;最后通过参数拉偏仿真及大包线全轨迹飞行仿真,对控制系统的性能进行了检验,验证了控制系统设计的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号