首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plain yogurt was subjected to spray drying to determine the optimum processing conditions that yield maximum survival ratio of lactic acid bacteria, maximum overall sensory attributes, minimum color change, and acceptable moisture content. The inlet (150–180°C) and outlet air temperatures (60–90°C) and the feed temperature (4–30°C) were the independent factors. A pilot-scale spray dryer was used to conduct a set of drying experiments where the process conditions were selected according to central composite rotatable design (CCRD). The resulting yogurt powder at each condition was also subjected to the measurement of some physical properties (water activity, titratable acidity [lactic acid, %] and pH) to determine the effects of spray-drying conditions. The morphological structure of the powder was inspected by scanning electron microscopy (SEM) analysis. Optimization by the application of the desirability function method resulted in air inlet temperature of 171°C, air outlet temperature of 60.5°C, and feed temperature of 15°C as the optimum processing condition. The mathematical optimum condition was experimentally verified.  相似文献   

2.
Abstract

The objective of the present study was to investigate the effect of inlet air temperature of spray drying and different combinations of carrier agents (maltodextrin (MD), gum Arabic (GA), modified starch (MS), and whey protein concentrate (WPC)) on the physicochemical characteristics of spray-dried whey powder, enriched with vitamin D3 to improve its usage as a functional ingredient. Firstly, vitamin D3 was nanoencapsulated by nanoliposome prepared with egg yolk lecithin, sesame oil, and glycerol through thin-film dispersion method. The mean particle size of prepared nanoliposomes was 140?nm. Then, the prepared nanocarriers loaded with vitamin D3 were added into the feed solution and dried through spray dryer. The effect of carrier agent types and inlet air temperature on the physicochemical (moisture content, solubility, porosity, color, and powder yield) and microstructure properties of obtained spray-dried powders were investigated. The optimal carrier agents and condition of spray drying were selected by Taguchi design. Our results showed that the inlet air temperature and carrier agent had significant effects on the characterization of powders. Powders produced by 2% WPC, 3% MS, and 25% MD at 170?°C inlet air temperature showed the highest powder yield (96.4%). Also, the morphology of powders was affected by carrier agent types; increase in MD concentration in feed solution causes to create smoother and spherical spray-dried powder particles.  相似文献   

3.
The influence of spray drying conditions on the energy required, production cost, and physicochemical characteristics of cheese whey was researched. The factors investigated were the inlet air temperature (180–220°C), outlet air temperature (80–100°C), and silica and maltodextrin (DE-10) as additives at 2 and 5% (w/w), respectively. Analysis of variance revealed that the inlet and outlet air temperatures, and the addition of additives had significant effects (p?Tinlet of 180°C, Toutlet of 80°C, and the addition of 5% additive material. Under these conditions, 0.2165?kg/h of dried product was obtained, with a moisture content of 2.08% and water activity of 0.125, and the product cost was $17.06?kg with an energy consumption of 2.0490?kW?·?h/kg of dry product.  相似文献   

4.
The objective of the study was to determine optimum inlet and outlet air temperatures of spray process for producing co-microcapsules containing omega-3 rich tuna oil and probiotic bacteria L. casei. These co-microcapsules were produced using whey protein isolate and gum Arabic complex coacervates as shell materials. Improved bacterial viability and oxidative stability of omega-3 oil were used as two main criteria of this study. Three sets of inlet (130°C, 150°C, and 170°C) and outlet (55°C, 65°C, and 75°C) air temperatures were used in nine combinations to produce powdered co-microcapsule. The viability of L. casei, oxidative stability of omega-3 oil, surface oil, oil microencapsulation efficiency, moisture content, surface elemental composition and morphology of the powdered samples were measured. There is no statistical difference in oxidative stability at two lower inlet air temperatures (130°C and 150°C). However, there was a significant decrease in oxidative stability when higher inlet temperature (170°C) was used. The viability of L. casei decreased with the increase in the inlet and outlet air temperatures. There was no difference in the surface elemental compositions and surface morphology of powdered co-microcapsules produced under these nine inlet/outlet temperature combinations. Of the range of conditions tested the co-microcapsules produced at inlet-outlet temperature 130–65°C showed the highest bacterial viability and oxidative stability of omega-3 and having the moisture content of 4.93?±?0.05% (w/w). This research shows that powdered co-microcapsules of probiotic bacteria and omega-3 fatty acids with high survival of the former and high stability against oxidation can be produced through spray drying.  相似文献   

5.
Sumac (Rhus coriaria L.) is a spice which is obtained by grinding of whole sumac berries. The aim of this study is to survey the feasibility of a spray dried sumac extract process along with the effects of adding maltodextrin (MD) and the effects of the inlet and outlet temperatures of the drying air on the properties of the powdered product obtained from the spray drying of the sumac extract. A pilot scale spray dryer was used for the production of the sumac extract powder. The inlet/outlet air temperatures were adjusted to 160/80, 180/90, and 200/100 °C where outlet air temperature was controlled by regulating the feed flow rate. The total soluble solid content of the sumac extract was measured as 3.5% and adjusted to 10, 15, 20, and 25% (w/w) with the addition of maltodextrin with a Dextrose Equivalence (DE) of 10–12. The obtained powders were analyzed for moisture content, water activity, ash content, pH, colour, total phenolic content, antioxidant activity, bulk density, wettability, solubility, and microstructure.Depending on the analysis of the results, the temperature, maltodextrin, and the interaction between temperature and maltodextrin have an important effect on the performed analysis (P < 0.05) except for the pH value analysis (P > 0.05).  相似文献   

6.
Gelatin powder from goat skin prepared by spray drying at various inlet temperatures (160–200°C) was characterized. Predominant particle sizes were in the range of 4.65–5.14?µm. Gelatin powder was mostly concave in shape with varying sizes, depending on inlet temperatures used. All gelatin powders were creamy whitish. Powder generally became more yellowish as the inlet temperature of spray drying increased (p?p?p?p?>?0.05). Goat skin gelatin spray dried with inlet temperatures of 160 or 180°C had higher gel strength than commercial bovine gelatin (p?相似文献   

7.
《Drying Technology》2013,31(5):895-917
Abstract

The concept of the product moisture locus was tested in this work using a pilot-scale modified Niro spray dryer (diameter 0.8 m, height 2 m), where the residence time of the particles inside this spray dryer is lower compared with larger industrial spray dryers. The moisture contents of skim milk powder produced from spray drying skim milk (solids content 8.8% w/v) at different operating conditions, namely different swirl vane angles (0°, 25°, 30°), inlet air temperatures (170°C, 200°C, 230°C) and process fluid flowrates (1.4 kg h?1, 1.6 kg h?1, 1.8 kg h?1), were compared with the predicted equilibrium moisture contents. In addition, the residence time of the particles was also increased in the spray dryer by decreasing the inlet air mass flowrate from 0.016 to 0.013 kg s?1. The outlet moisture contents of the skim milk powder for all the 23 runs carried out in this work were within 0.4% of the equilibrium values. Thus, the skim milk powder particles were in close equilibrium with the gas inside the drying chamber. These equilibrium limitations are confirmed by other literature data (Boonyai, P. Comparative Evaluation of Soymilk Drying in a Spray Dryer and Spouted Bed of Inert Particles. M.Sc. Thesis. Asian Institute of Technology: Bangkok, Thailand, 2000; 90 pp; Harvie, D.J.E.; Langrish, T.A.G.; Fletcher, D.F. A computational fluid dynamics study of a tall-form spray dryer. Trans IChemE 2002, in press). The use of this finding to predict spray dryer performance is demonstrated by mass and energy balance calculations.  相似文献   

8.
Abstract

Spray drying process design for vanilla extract with a given aromatic compound retention requires process analysis and elucidation of empirical relations of the retentions as functions of process variables. Therefore, vanilla ethanolic extracts were spray dried under N2 at different inlet (170–180?°C) and outlet (80–90?°C) temperatures and carrier material (modified potato starch, DE-10 maltodextrin, β-cyclodextrin, and precipitated silica) concentrations. The moisture content, water activity, aromatic compound (vanillin, vanillic acid, p-hydroxybenzaldehyde and p-hydroxybenzoic acid) retention, and color were empirically modeled as functions of process variables. The significance of the process variables was evaluated with linear statistics.  相似文献   

9.
In this study, production of pomegranate juice powder using a spray dryer was investigated. To prevent stickiness, maltodextrin dextrose equivalent 6 (DE6) was used as a drying agent. While feed flow rate, feed temperature, and air flow rate were kept constant, air inlet temperature (110–140°C), percentage maltodextrin (MD; maltodextrin dry solids/100 g feed mixture dry solids; 39.08–64.12%), and feed mixture concentration (19.61–44.11 °Brix) were chosen as the independent variables. Product properties investigated included moisture content, hygroscopicity, anthocyanin content, color change, solubility, bulk density, total phenolics content, antioxidant capacity, and sensory properties. The products were produced with high yield (86%) and high antioxidant activity (77%). MD and drying temperature were found to be the most important variables in production of pomegranate juice powders. Because total color change (ΔE), bulk density, antioxidant capacity, and powder yield were affected strongly by the independent variables, these parameters were used in optimization of the process. The optimum temperature, feed mixture concentration, and percentage maltodextrin were 100°C, 30.8 °Brix, and 53.5% MD, respectively. This study revealed that by applying these optimal conditions, pomegranate juice powder with a 55% dry solids yield, 9.78 total color change, 0.35 g/mL bulk density, and 57.8% antioxidant capacity were produced.  相似文献   

10.
In this paper, the operating parameters of spray drying after a series of pre-processing were investigated and the properties and qualities of the freshwater mussel meat (FMM) powder were also analyzed. The considerable optimum conditions of spray drying were as follows: the inlet and outlet air temperature of the both deodorization were 180 °C and 80 °C, respectively; the optimum feed concentration for composite deodorization (CD) FMM powder was 30%, and for stewing deodorization (SD) FMM powder 27%; on top of all that, the feed temperature was 50 °C, 45 °C, respectively. In the later analysis, FMM powder was shown to be rich in protein and glycogen, up to 52.7%, 27.71% and 53.4%, 27.69%; meanwhile both the contents of essential amino acids (EAAs) in FMM powders were as high as 44%, which were close to the pattern of FAO/WHO. Thus the FMM powder of the both kinds, namely CD and SD FMM, were thought to be acceptably edible resources with high nutrition for human.  相似文献   

11.
ABSTRACT

Barley grass (Triticum aestivum L.) is popular, commonly known as a nutritional supplement in China. To obtain the highest chlorophyll and flavonoid content as well as other physicochemical characteristics, spray drying from barley grass juice was carried out for two different maltodextrin concentrations (10 and 20%, dried basis) and four different inlet air temperatures (140, 150, 160, and 170°C). After drying, color, water activity, odor, taste, density, particle size, glass transition temperature, and chlorophyll and flavonoid contents of the dried product were measured. Highest contents of flavonoid (5.66?mg/kg) and chlorophyll (7.29?mg/kg) were obtained under 150°C inlet air temperature, 10% maltodextrin concentration, at a feed flow rate of 1.8?L/h for the drying. Corresponding particle size was 19.58–13.33?µm. The glass transition temperature (Tg) increased with the increasing of maltodextrin concentration; and two max Tg of powder obtained from 10 and 20% maltodextrin concentration were 74.4 and 77.4°C, respectively. Retention of taste and flavor were highest with 20% maltodextrin. High inlet air temperature was contributed to the large discrepancy of odor and taste substances. The best color (lightness L*?=?64.44 and greenness b*?=??11.53) was obtained at 150°C inlet air temperature and 10% maltodextrin concentration. Both maltodextrin concentrations resulted in poor flowability of the dried product (CI?≤?32.51).  相似文献   

12.
Survival of spores of Bacillus thuringiensis was determined under various processing conditions for spray drying. The results indicated that the viable spores number of B. thuringiensis decreased with increased inlet air temperature, outlet air temperature and atomising air pressure. When the inlet air temperature ranged from 170 °C to 250 °C, the outlet air temperature (75 °C) and atomising air pressure (0.15 MPa) were fixed, the pseudo-z value (one logarithmic cycle reduction) was 238.1 °C; when the outlet air temperature ranged from 65 °C to 95 °C, the inlet air temperature (200 °C) and atomising air pressure (0.15 MPa) were fixed, the pseudo-z value was 85.5 °C, the activation energy calculated according to the outlet air temperature was 59.96 kJ mol−1; when the atomising air pressure ranged from 0.10 MPa to 0.25 MPa, the inlet air temperature (200 °C) and outlet air temperature (75 °C) were fixed, the pseudo-z value was 3.49 MPa, the variance analysis showed that the atomising air pressure has no significant influence to the spores. The diluting solutions between Tween-80 solution and phosphate buffer have significant influence on the plate count of spores.

The B. thuringiensis powder prepared by spray drying with inlet air temperature 250 °C, outlet air temperature 97 °C, the spores count of powder decreased obviously. But when the inlet air temperature of 155–165 °C, outlet air temperature of 66–70 °C were employed, the spores count of powder approaches to that of freeze drying powder. The spores count of oven drying powder was lower than that of the freeze drying powder, but close to the spray drying powder which inlet air temperature was 200 °C, outlet air temperature was 75 °C.  相似文献   


13.
The influence of spray-drying conditions, inlet air temperature (130°C to 200°C), outlet air temperature (38°C to 65°C), drying medium (air and nitrogen) and milk-derived protectants (10%, 15%, and 25% lactose; 5% and 10% sodium caseinate; 10%, 25%, and 35% lactose:sodium caseinate (Lac:NaCas, 3:1)) on the survival of Lactococcus lactis ssp. cremoris was studied using a laboratory-scale spray dryer. An inlet air temperature of 130°C and 65°C as the outlet air temperature maintained high survival of the bacteria without sacrificing low moisture content. Inlet air temperature, previously considered to have no significant effect, was shown to play an important role in the survival of bacteria during spray drying. A mixture of Lac:NaCas (3:1) showed a better protective effect on the survival of bacteria than lactose and sodium caseinate individually, and this effect increased with increasing amount of protectant. The results were generalized by substituting whey protein isolate for sodium caseinate. Finally, the positive effect of elimination of oxygen was demonstrated both by replacing air with nitrogen and adding ascorbic acid as an oxygen scavenger to improve survival of the bacteria. Adding an oxygen scavenger would be a better candidate for industrial application considering the potential high cost of manufacturing if nitrogen was used as the atomization and/or drying medium.  相似文献   

14.
β-果糖基转移酶转化蔗糖水溶液生成的G型低聚果糖(以下称G-FOS;FOS纯度50%~60%)中,伴有25%~32%葡萄糖及1%~3%果糖生成。在对G—FOS喷雾干燥过程中葡萄糖和果糖很容易吸湿并结块粘壁,而且G—FOS熔点(约62℃)低,在高温干燥过程中易成熔溶态而难以制得干粉。针对这两个难题,以离心式压力喷雾干燥器进行喷干试验,通过正交设计及分析得到的喷雾干燥控制参数为:料液浓度为30%,进风温度为140℃,出风温度为90℃,进风量为40L/s,可制得74~350μm粉状产品,收率约85%.G—FOS干粉在RH≤45%环境放置3天不结块。同时还对G—FOS干粉流动性、回潮时间等性质进行了初步研究。  相似文献   

15.
Abstract

During spray drying, probiotics encounter several stresses which can reduce their viability. To obtain powder with a sufficient amount of viable probiotics, we evaluated the effects of different process parameters, such as initial cell concentration and the bacterial growth phase, on the viability of the model probiotic Lactobacillus rhamnosus GG. Increasing the initial biomass did not positively impact bacterial viability after spray drying. For growth, we found that stationary grown bacterial cells were more resistant to the spray-drying process than mid-log grown cells, probably owing to an initiated stress response. Furthermore, a full factorial 3³ design was used to assess the influence of three different conditions of inlet temperature, feed rate, and atomizing air flow on the outlet temperature and bacterial viability after spray drying. As expected, inlet temperature had the largest influence on both outlet temperature and log-reduction in bacterial viability. An interaction effect was also observed between feed rate and inlet temperature. Considering the viability of L. rhamnosus GG, the optimal outlet temperature ranged between 50 and 60?°C for obtaining powders with the lowest log-reductions in viability.  相似文献   

16.
天然产物白果会因干燥方式的不同,而使得干燥白果粉性能有所差别。本研究分别采用喷雾干燥(SP)与真空冷冻干燥(FD)对白果浆进行干燥处理。然后对两种干燥白果粉的性能(含水量、颗粒度、色泽、蛋白质质量分数)进行对比来比较各自的优越性。喷雾干燥采用参数:风量120 m3/h,进料浓度8%(质量分数),进气温度205℃,出气温度100℃,雾化器转速32000 r/min。真空冷冻干燥先在-40℃下预冻4h后,再在真空度300 Pa下-50℃低温干燥48 h。结果发现含水量SP相似文献   

17.
Optimum technology of spray-dried bayberry powder was studied using D-optimal experimental design. The operating conditions were varied within the following ranges: inlet air temperature 140–160°C, outlet air temperature 65–85°C, maltodextrin DE values 12 and 19, and feed concentrations of 7–17°B. The spray-dried bayberry powder was analyzed for moisture content and color. Moisture content of spray-dried powder was determined mainly by the inlet and outlet air temperatures, DE value, and the feed concentration. The inlet and outlet temperature had important effects on powder color. Finally, instant bayberry powder for beverages was produced by agglomeration of the spray-dried product.  相似文献   

18.
The objective of this work was to optimize the spray drying of babassu coconut milk, an oil-in-water emulsion extracted from babassu kernels, using maltodextrin 10DE and modified starch as the carrier agents. Two central composite rotatable designs were used to verify the effect of the inlet air temperature and carrier agent concentration on process performance (process yield and outlet air temperature) and the physicochemical properties of the powder (moisture content, water activity, hygroscopicity, and lipid oxidation). Powders obtained under optimized conditions (25% maltodextrin concentration and 188°C, and a modified starch concentration of 20% and 170°C) were evaluated according to their morphology, particle size distribution, bulk and absolute densities, porosity, wettability, and thermal analysis.  相似文献   

19.
Industrial production of lactose hydrolyzed milk powder (LHMP) remains challenging. Due to the presence of the monosaccharides glucose and galactose, lactose-free powders tend to suffer stickiness, caking, and browning during drying and storage. We sought to find ideal conditions spray dryer inlet air temperature (θair,in) and concentrated milk flow rate (mCM) for LHMP production. We tested θair,in settings of 115–160°C and mCM of 0.3–1.5?kg?·?h?1, and also applied mass and energetic balances. LHMP generally exhibited higher mass and energetic losses than the control (milk powder containing lactose), as a consequence of the relatively low dryability of LHMP. For a lab scale spray dryer, the ideal conditions settings for LHMP production were θair,in?=?145?±?2°C and mCM?=?1.0?kg?·?h?1, taking into account the mass yield and energetic cost (kJ?·?kg?1 of powder) of the process. These ideal conditions are a potential tool for the industrial development of lactose-free dairy powders.  相似文献   

20.
The purpose of this work was to study the effects of spray-drying conditions on the physicochemical characteristics of blackberry powder using a central composite rotatable design. Inlet air temperature (140–180°C) and maltodextrin concentration (5–25%) were employed as independent variables. Moisture content, hygroscopicity, anthocyanin retention, color, powder morphology, and particle size were analyzed. A higher inlet air temperature significantly increased the hygroscopicity of the powder, decreased its moisture content, and led to the formation of larger particles with smooth surfaces. Powders produced with higher maltodextrin concentrations were less hygroscopic, slightly lighter and less red, and had a lower moisture content. Anthocyanin retention was mainly affected by drying temperature due to the heat sensitivity of the pigment. The optimal processing conditions were an inlet air temperature of 140–150°C and maltodextrin concentration of 5–7%. Overall, these results indicate that good quality powders can be obtained by spray drying, with potential applications for the food industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号