首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The discrete crack mechanics (DCM) method is a dislocation-based crack modeling technique where cracks are constructed using Volterra dislocation loops. The method allows for the natural introduction of displacement discontinuities, avoiding numerically expensive techniques. Mesh dependence in existing computational modeling of crack growth is eliminated by utilizing a superposition procedure. The elastic field of cracks in finite bodies is separated into two parts: the infinite-medium solution of discrete dislocations and an finite element method solution of a correction problem that satisfies external boundary conditions. In the DCM, a crack is represented by a dislocation array with a fixed outer loop determining the crack tip position encompassing additional concentric loops free to expand or contract. Solving for the equilibrium positions of the inner loops gives the crack shape and stress field. The equation of motion governing the crack tip is developed for quasi-static growth problems. Convergence and accuracy of the DCM method are verified with two- and three-dimensional problems with well-known solutions. Crack growth is simulated under load and displacement (rotation) control. In the latter case, a semicircular surface crack in a bent prismatic beam is shown to change shape as it propagates inward, stopping as the imposed rotation is accommodated.  相似文献   

2.
In this paper, a coupled hydro-mechanical formulation is developed for deformable porous media subjected to crack interfaces in the framework of extended finite element method. Governing equations of the porous medium consist of the momentum balance of the bulk together with the momentum balance and continuity equations of the fluid phase, known as formulation. The discontinuity in fractured porous medium is modeled for both opening and closing modes that results in the fluid flow within the fracture, and/or contact behavior at the crack edges. The fluid flow through the fracture is assumed to be viscous and is modeled by employing the Darcy law in which the permeability of fracture is obtained using the cubic law. The contact condition in fractured porous medium is handled by taking the advantage from two different algorithms of LATIN method and penalty algorithm. The effect of contact on fluid phase is employed by considering no leak-off from/into the porous medium. The nonlinearity of coupled equations produced due to opening and closing modes is carried out using an iterative algorithm in the Newton–Raphson procedure. Finally, several numerical examples are solved to illustrate the performance of proposed X-FEM method for hydro-mechanical behavior of fractured porous media with opening and closing modes.  相似文献   

3.
A coupling extended multiscale finite element method (CEMsFEM) is developed for the dynamic analysis of heterogeneous saturated porous media. The coupling numerical base functions are constructed by a unified method with an equivalent stiffness matrix. To improve the computational accuracy, an additional coupling term that could reflect the interaction of the deformations among different directions is introduced into the numerical base functions. In addition, a kind of multi‐node coarse element is adopted to describe the complex high‐order deformation on the boundary of the coarse element for the two‐dimensional dynamic problem. The coarse element tests show that the coupling numerical base functions could not only take account of the interaction of the solid skeleton and the pore fluid but also consider the effect of the inertial force in the dynamic problems. On the other hand, based on the static balance condition of the coarse element, an improved downscaling technique is proposed to directly obtain the satisfying microscopic solutions in the CEMsFEM. Both one‐dimensional and two‐dimensional numerical examples of the heterogeneous saturated porous media are carried out, and the results verify the validity and the efficiency of the CEMsFEM by comparing with the conventional finite element method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
5.
A finite element algorithm involving the “Breakable element” concept is proposed for the prediction of the growth of a crack in a solid subject to combined thennoelastic-plastio-creep load. The unique advantage of this algorithm is its ability to provide detail stress and strain distributions, the kinematics of the inelastic zones, as well as the profiles of the growing crack. A numerical example with three assigned effective rupture strains as fracture criteria, is included to illustrate these special features.  相似文献   

6.
An improvement of a new technique for modelling cracks in the finite element framework is presented. A standard displacement‐based approximation is enriched near a crack by incorporating both discontinuous fields and the near tip asymptotic fields through a partition of unity method. A methodology that constructs the enriched approximation from the interaction of the crack geometry with the mesh is developed. This technique allows the entire crack to be represented independently of the mesh, and so remeshing is not necessary to model crack growth. Numerical experiments are provided to demonstrate the utility and robustness of the proposed technique. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a numerical method for fatigue crack growth in the framework of finite element method, i.e. a new enriched element is presented in which only the analytical solutions around crack tips are used to describe the displacements and stresses fields. A special variational principle is introduced to simplify the mathematical derivations for discrete equation, and the stiffness matrix of the new enriched element is given in a compact form. Moreover, the stiffness matrix is found to be independent on the element size. Numerical examples on fatigue crack growth are given to illustrate the validity of the present method.  相似文献   

8.
9.
Extensive stable cracking has been observed in large test pieces of 25 mm thick weldable AlMgZn alloy which is used in the construction of a portable bridge. Standard fracture specimens produced valid KIC values, with short cracks exhibiting unstable fracture. Finite element analysis of the large specimens determined a valid JR-curve that can increase the effective KC by several times the KIC value. The R-curve has an unusual ‘concave’ shape that is associated with the change from initially flat fracture to fully slant fracture. The early stages of the R-curve are affected by in-plane constraint that can be indexed by the T-stress. The R-curve can be used to explain the stability of long cracks in full-scale tests on a bridge prototype, compared with the instability of short cracks in small, standard test pieces.  相似文献   

10.
The purpose of this study was to devise and verify a scheme of analysis which can be used to investigate the micromechanical failure mechanisms and determine an effective fracture toughness for a class of fiber reinforced materials. The material of primary interest in this study consists of a linearly elastic matrix material reinforced with rows of parallel, linearly elastic and straight fibers. Micromechanical multiplane finite element and experimental studies of the stress conditions near a crack front in a side cracked fiber reinforced epoxy tensile specimen were conducted. The 2-D multiplane method of analysis, recently developed at Syracuse University for approximate analysis of a class of 3-D problems, was the basis of the micromechanical finite element analytical technique developed in this study. Since failure of a member fabricated from a fiber reinforced material is generally proceeded by local failures, sequential finite element analyses were performed to model the progressive failure mechanism. Local failure modes considered in the analysis are yield in either the matrix material or fibers, crack extension in the matrix material, and failure of the matrix to fiber bond. The agreement between the multiplane analytical and laboratory test results show that the multiplane method provides a useful tool for micromechanical study of fiber reinforced composite materials.  相似文献   

11.
A finite element analysis of crack growth in tungsten carbide cobalt has been used to study the plastic deformation of binder ligaments bridging the crack faces in the wake of a matrix crack. A multiligament zone observed on the intersection of an arrested crack with a free surface is used to model the crack tip region. The plane stress results demonstrate that plasticity is confined to a band linking the ligament tips well in accordance with experimentally found deformation patterns. The plane strain calculations for the same microstructure supply information about hole nucleotion and growth which are known to control the failure process of the ligaments. It is concluded from a recent analysis of void growth in homogeneous materials, that plastic deformation in the binder of WC-Co is concentrated in the neck between a blunting crack tip and a void growing ahead of it. Thus in both cases, plane stress and plane strain, non bridging binder regions deform purely elastically in contrast to the results of recent finite element calculations. It is seen that the previously used concept of a plastic zone size in the binder of cemented carbides equal to or larger than the mean intercept length of the binder, 305-1, must be modified. 305-2 constitutes only an upper limit for the mean size of the plastic zone while the actual extension of plasticity is smaller.
Résumé On utilise une analyse par éléments finis de la croissance d'une fissure dans un alliage Cobalt-Carbure de Tungstène pour l'étude de la déformation plastique des ligaments de liaison entre les faces d'une fissure prenant naissance dans une matrice. Pour représenter la région à l'extrémité de la fissure, on utilise la zone multiligamentaire observée à l'intersection d'une fissure ouverte et d'une surface libre. Les résultats correspondent à un état plan de tension démontrant que la plasticité est confinée à une bande reliant les extrémités des ligaments, ce qui est bien en accord avec les aspects de déformation trouvés expérimentalement. Les calculs en état plan de déformation pour la même microstructure fournissent une information sur le processus de nucléation et de croissance des lacunes, qui est connu pour contrôler le processus de rupture d'un ligament. On conclut de l'analyse pour des matériaux homogènes que la déformation plastique dans une liaison de WC-Co est concentrée dans la position rétrécie entre l'extrémité arrondie d'une fissure et une lacune en croissance en amont de celle-ci. Dès lors, dans les deux cas de tension plane ou de déformation plane, les régions de liaison qui ne relient pas les faces de la rupture se déforment de manière purement élastique, ceci en contraste avec les résultats de calculs récents par éléments finis. On constate que le concept de taille de zone plastique égale ou supérieure à la longueur moyenne 317-3 de la liaison doit être modifié. 317-4 ne représente qu'une limite supérieure pour la taille moyenne de la zone plastique, tandis que l'étendue réelle de la plasticité est plus petite.
  相似文献   

12.
The extended finite element method (XFEM) combined with a cyclic cohesive zone model (CCZM) is discussed and implemented for analysis of fatigue crack propagation under mixed-mode loading conditions. Fatigue damage in elastic-plastic materials is described by a damage evolution equation in the cohesive zone model. Both the computational implementation and the CCZM are investigated based on the modified boundary layer formulation under mixed-mode loading conditions. Computational results confirm that the maximum principal stress criterion gives accurate predictions of crack direction in comparison with known experiments. Further popular multi-axial fatigue criteria are compared and discussed. Computations show that the Findley criterion agrees with tensile stress dominant failure and deviates from experiments for shear failure. Furthermore, the crack propagation rate under mixed mode loading has been investigated systematically. It is confirmed that the CCZM can agree with experiments.  相似文献   

13.
Extended finite element method for cohesive crack growth   总被引:14,自引:0,他引:14  
The extended finite element method allows one to model displacement discontinuities which do not conform to interelement surfaces. This method is applied to modeling growth of arbitrary cohesive cracks. The growth of the cohesive zone is governed by requiring the stress intensity factors at the tip of the cohesive zone to vanish. This energetic approach avoids the evaluation of stresses at the mathematical tip of the crack. The effectiveness of the proposed approach is demonstrated by simulations of cohesive crack growth in concrete.  相似文献   

14.
A methodology for the computational modeling of the fatigue crack growth in pressurized shell structures, based on the finite element method and concepts of Linear Elastic Fracture Mechanics, is presented. This methodology is based on that developed by Potyondy [Potyondy D, Wawrzynek PA, Ingraffea, AR. Discrete crack growth analysis methodology for through crack in pressurized fuselage structures. Int J Numer Methods Eng 1995;38:1633–1644], which consists of using four stress intensity factors, computed from the modified crack integral method, to predict the fatigue propagation life as well as the crack trajectory, which is computed as part of the numerical simulation. Some issues not presented in the study of Potyondy are investigated herein such as the influence of the crack increment size and the number of nodes per element (4 or 9 nodes) on the simulation results by means of a fatigue crack propagation simulation of a Boeing 737 airplane fuselage. The results of this simulation are compared with experimental results and those obtained by Potyondy [1].  相似文献   

15.
16.
This paper deals with the acoustical behaviour of a rigid porous material. A finite element method to compute both the response to an harmonic excitation and the free vibrations of a three‐dimensional finite multilayer system consisting of a free fluid and a rigid porous material is considered. The finite element used is the lowest order face element introduced by Raviart and Thomas, that eliminates the spurious or circulation modes with no physical meaning. For the porous medium a Darcy's like model and the Allard–Champoux model are taken into account. The numerical results show that the finite element method allows us to compute the response curve for the coupled system and the complex eigenfrequencies. Some of them have a small imaginary part but there are also overdamped modes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents an original time-domain boundary element formulation for the dynamic analysis of porous media. Integral equations for displacements, stresses and pore-pressures, based on non-transient fundamental solutions are considered. Elastoplastic models are also dealt with by the present methodology, extending the applicability of boundary elements to model complex porodynamic problems. At the end of the paper, a discussion concerning two numerical examples is presented, illustrating the potentialities of the new procedure.  相似文献   

18.
A mixed finite element for hydro‐dynamic analysis in saturated porous media in the frame of the Biot theory is proposed. Displacements, effective stresses, strains for the solid phase and pressure, pressure gradients, and Darcy velocities for the fluid phase are interpolated as independent variables. The weak form of the governing equations of coupled hydro‐dynamic problems in saturated porous media within the element are given on the basis of the Hu–Washizu three‐field variational principle. In light of the stabilized one point quadrature super‐convergent element developed in solid continuum, the interpolation approximation modes for the primary unknowns and their spatial derivatives of the solid and the fluid phases within the element are assumed independently. The proposed mixed finite element formulation is derived. The non‐linear version of the element formulation is further derived with particular consideration of pressure‐dependent non‐associated plasticity. The return mapping algorithm for the integration of the rate constitutive equation, the consistent elastoplastic tangent modulus matrix and the element tangent stiffness matrix are developed. For geometrical non‐linearity, the co‐rotational formulation approach is used. Numerical results demonstrate the capability and the performance of the proposed element in modelling progressive failure characterized by strain localization due to strain softening in poroelastoplastic media subjected to dynamic loading at large strain. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Two finite element formulations are proposed to analyse the dynamic conditions of saturated porous media at large strains with compressible solid and fluid constituents. Unlike similar works published in the literature, the proposed formulations are based on a recently proposed hyperelastic framework in which the compressibility of the solid and fluid constituents is fully taken into account when geometrical non‐linear effects are relevant on both micro‐ and macroscales. The first formulation leads to a three‐field finite element method (FEM), which is suitable for analysing high‐frequency dynamic problems, whereas the second is a simplification of the first, leading to a two‐field FEM, in which some inertial effects of the pore fluid are disregarded, hence the second formulation is suitable for studying low‐frequency problems. A fully Lagrangian approach is considered, hence all terms are expressed with reference to the material setting; the balance equations for the pore fluid are also expressed in terms of the chemical potential and the mass flux of the pore fluid in order to take the compressibility of the fluid into account. To improve the numerical response in the case of wave propagation, a discontinuous Galerkin FEM in the time domain is applied to the three‐field formulation. The results are compared with analytical and semi‐analytical solutions, highlighting the different effects of the discontinuous Galerkin method on the longitudinal waves of the first and second kind. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
An element for analysis of variable order one point singularities in plane problems has been proposed. The element meets all the convergence requirements, viz. the rigid body mode, the constant strain condition and the interelement compatibility. It can be easily incorporated in any package based on the displacement formulation. Four examples from fracture mechanics are presented to demonstrate its performance. The examples involve mechanical or thermal loadings. The accuracy of results in all the examples is very good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号