共查询到15条相似文献,搜索用时 46 毫秒
1.
2.
针对X波段串联和并联两种结构的反馈式介质振荡器(DRO)进行了较深入的研究,并介绍了一种通用的介质振荡器设计方法,设计、实现了这两种反馈式介质振荡器,实验表明该设计方法简单可行。首先运用电磁感应理论简要介绍介质谐振器应用于微波电路的基本原理,阐述了影响介质振荡器相位噪声、稳定度等性能的关键因素,并分别运用负阻和反馈理论对串联和并联两种反馈式介质振荡器的拓扑结构进行了详尽的分析。然后选用相同的介质谐振器和有源器件,运用仿真软件HFSS和ADS设计这两种结构的振荡器,并结合设计过程详细地介绍了设计方法,最后分析仿真结果和实测数据,总结了串、并联反馈式振荡器各自的特点。 相似文献
3.
4.
研究了一种具有较宽机械调频范围和较低相位噪声的x波段介质振荡器设计方法.利用介质谐振器法对三种型号的介质谐振器(DR)材料进行了精确的测试,得到了其介电常数εr和损耗角正切值tanδ以及DR的谐振频率.利用仿真软件建立微带线与谐振器耦合模型,通过仿真提取其S2P文件.选用GaAs FET ATF26884作为电路中的放大器件,使用生成的S2P文件建立介质振荡器(DRO)电路模型,调整耦合段和输出匹配微带线的长度,得到较低的相位噪声.测试证明输出信号的相位噪声在偏离中心频率100 kHz处小于-100 dBc/Hz. 相似文献
5.
介绍了一种有广泛应用前景的并联反馈型介质稳频振荡器(DRO)的电路原理和结构[7]。它采用平行线耦合结构,将相位调整和耦合大小的调整完全分开,易于实现和调整,从工程上基本解决了β值的选取和实现,因此提高了成品率。用此电路设计了工作频率为8.6GHZ的并联反馈型DRO,其实验结果:在偏离载频10kHZ处,相位噪声为-84dBc/Hz。 相似文献
6.
7.
Ku波段低相噪锁相介质振荡器 总被引:1,自引:1,他引:1
应用取样锁相技术对Ku波段低相噪锁相介质振荡器进行了研究,对取样锁相技术的工作原理和电路特性进行了分析,阐述了取样锁相环路的设计过程.对制成的实物进行了测试和调试,取得了预期的相位噪声指标.实验结果表明,该取样锁相源的频率为17GHz,输出功率≥10dBm,杂波抑制比≥70dBc,相位噪声-103dBc/Hz@1kHz, -107dBc/Hz@10kHz, -110dBc/Hz@100kHz, -128dBc/Hz@1MHz. 相似文献
8.
本文采用介质谐振器的高阶模式,研制出振荡频率为10.7GHz的并联反馈型介质稳频振荡器,由于可以获得很高的有载Q值,振荡器具有良好的相位噪声性能。 相似文献
9.
10.
主要介绍了介质振荡器的设计理论,以及使用Agilent公司的ADS仿真软件进行X波段介质振荡器的设计和仿真。在设计过程中使用NEC公司的MESFET管NE71084作为振荡器的有源器件,利用介质谐振器实现了输出信号的稳频与反馈。给出仿真结果和输出信号相位噪声与功率的实际测试结果。测试结果表明,该方法可以有效地指导介质振荡器的设计过程,提高设计效率。 相似文献
11.
微波介质陶瓷材料综述 总被引:21,自引:4,他引:21
从使用微波介质陶瓷材料制作微波介质谐振器的角度,详细综述了微波介质陶瓷材料的特性、发展现状,讨论了提高微波介质材料性能的途径,指出了其今后的发展和应用方向。 相似文献
12.
运用串联反馈振荡器理论设计了一个工作于S波段的低相噪同轴介质压控振荡器.首先分析了同轴介质谐振器的理论以及串联反馈振荡器的工作原理,然后在高频电磁仿真软件HFSS和ADS中进行仿真和设计.为了实现电调谐,将变容管合理地加入振荡器,最终设计完成了一个S波段的低相噪同轴介质压控振荡器.通过对实物成品的测量和调试表明,此压控振荡器达到了预定的技术指标,各项性能良好.测试结果:工作频率为2.075~2.250 GHz,调谐范围为1.75GHz,输出功率≥11 dBm,谐波抑制度≥23 dBc,相位噪声优于-133 dBc/Hz@100kHz. 相似文献
13.
本文介绍了一种具有高电子迁移率晶体管(HEMT)和砷化镓单片微波集成电路(GaAs MMIC)的Ku波段低噪声放大器。在11.7~12.2GHz频率范围内,该放大器的噪声系数小于1.9dB,相关增益大于27dB,输入和输出驻波比小于1.4。放大器第一级采用了HEMT和微波串联电感反馈技术,放大器未级采用了Ku波段GsAs MMIC。设计的关键是采用微波串联电感反馈方法同时获得最佳噪声和最小输入驻波匹配。放大器的输入端和输出端均为BJ-120波导。 相似文献
14.
戴水胜 《电子科学学刊(英文版)》1993,10(3):279-283
A novel Ku-band low noise amplifier with a high electron mobility transistor (HEMT)and a GaAs monolithic microwave integrated circuit (MMIC) has been demonstrated. Its noisefigure is less-than 1.9dB with an associated gain larger than 27dB and an input/output VSWRless than 1.4 in the frequency range of 11.7-12.2GHz. The HEMT and the microwave series in-ductance feedback technique are used in the first stage of the amplifier, and a Ku-band MMIC isemployed in the last stage. The key to this design is to achieve an optimum noise match and a min-imum input VSWR matching simultaneously by using the microwave series inductance feedbackmethod. The B J-120 waveguides are used in both input and output of the amplifier. 相似文献
15.
Sung-Jin Cho 《International Journal of Electronics》2013,100(4):563-574
The spiral meander spurline structure is an optimal solution for a reduced resonator size and a high Quality factor (Q-factor) compared to other conventional spurline structures. The spiral meander spurline resonator shows not only 38% reduced dimensional effect, but also 16% improved Q-factor compared with conventional meander spurline resonator. Moreover, in order to get more high quality factor, we analysed spurline slot width variation and designed the symmetric dual spiral meander structure, which has a 46.87% improved Q-factor compare with a single spiral meander. The symmetric dual spiral meander structure resonator performance results are shown in a return loss of ?0.76?dB, an insertion loss of ?46.32?dB, and a quality factor of 235 at 6.4?GHz C-band application. In addition, according to the design and performance of the resonator, we can derive from this performance a low phase noise oscillator. The oscillators using symmetric dual spiral meander structure resonator shows good phase noise performances of ?104.43?dBc/Hz at a 100?kHz offset from the carrier frequencies of 6.38?GHz at output powers of 12.2?dBm, respectively. 相似文献