首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 911 毫秒
1.
Abstract— A model predicting the magnitude of frictional effects from fracture surface roughness on mode III fatigue crack growth is presened. Analysis of published data indicates that fracture surface roughness of the order of micrometers or less is enough to account for mode III fatigue crack growth retardation observation for increasing crack lengths for growth at constant Δ K . The model suggests that high strength materials will exhibit a greater resistance to shear crack growth than low strength materials. It also suggests that the resistance to shear crack growth will be more prominent at low nominal applied shear stress. The results of the analysis suggest that the concept of similitude does apply to mode III fatigue crack growth when the effects of friction on the stress intensity factor are included.  相似文献   

2.
Abstract— Duplicate tests have been performed to determine the effect of cathodic protection potential on corrosion fatigue crack growth rate of a modern offshore structural steel, produced by thermo-mechanically controlled processes. The experiments were carried out using compact tension specimens exposed to artificial seawater at 10°C and subjected to constant amplitude loading at 0.35 Hz. Reproducible results showed that the merits of cathodic protection potentials are strongly dependent on stress intensity ratio R and stress intensity range Δ K . It appears that a specific value of cathodic potential may not give comprehensive protection against corrosion fatigue within the spectrum of variable amplitude loading experienced in service. Fractography showed the initiation of secondary cracks on the fracture surface to be associated with the dissolution of calcium sulphide inclusions, regardless of imposed cathodic potential.  相似文献   

3.
This study reports an experimental investigation of fatigue crack propagation in AlMgSi1-T6 aluminium alloy using both constant and variable load amplitudes. Crack closure was monitored in all tests by the compliance technique using a pin microgauge. For the constant amplitude tests four different stress ratios were analysed. The crack closure parameter U was calculated and related with Δ K and the stress ratio, R . The threshold of the stress intensity factor range, Δ K th , was also obtained. Fatigue crack propagation tests with single tensile peak overloads have been performed at constant load amplitude conditions. The observed transient post overload behaviour is discussed in terms of the overload ratio, Δ K baseline level and R . The crack closure parameter U trends are compared with the crack growth transients. Experimental support is given for the hypothesis that crack closure is the main factor determining the transient crack growth behaviour following overloads on AlMgSi1-T6 alloy for plane stress conditions.  相似文献   

4.
Abstract— Cyclic fatigue-crack growth and resistance-curve behavior have been studied in a fine-grained (∼ 1 μm), high-purity alumina. Specific emphasis is given to the mechanisms associated with crack growth that are controlled by the maximum ( K max) and the alternating (Δ K ), stress intensities and to the role of crack-face interference (crack closure), which is known to be an important crack-tip shielding mechanism in metal fatigue. Significant levels of subcritical crack growth were detected above a threshold stress intensity of ∼60% of the fracture toughness ( K c) in the alumina, with growth rates displaying a far larger dependence on K max compared to Δ K. The role of crack closure was examined using constant- K max experiments, where the minimum stress intensity ( K min) was maintained either above or below the stress intensity for crack closure ( K cl). Where K min< K cl, growth rates were found to exhibit a lower dependence on Δ K , which was rationalized in terms of the frictional wear model for crack growth in grain-bridging ceramics. It is concluded that crack closure, as conventionally defined, has little relevance as a crack-tip shielding mechanism during fatigue-crack growth in grain-bridging ceramics, due to the low dependence of growth rates on Δ K compared to K max.  相似文献   

5.
The very high cycle fatigue and fatigue crack growth (FCG) behaviours of 2000-MPa ultra-high-strength spring steel with different bainite–martensite duplex microstructures (designated as B-M1 and B-M2) obtained through isothermal quenching and fully martensite (designated as M) for comparison were studied in this paper by using ultrasonic fatigue testing and compact-tension specimens. It was found that for the B-M1 sample with well-controlled thin and uniformly distributed bainite, the fatigue crack threshold Δ K th is higher and FCG rate da / dN at an early stage is lower than those of the M sample. Therefore, the former has rather longer fatigue life at high stress amplitude, though both have almost identical fatigue strength. However, the fatigue properties of bainite–martensite duplex microstructure are significantly deteriorated with the formation of large bainite. Furthermore, like that of the M sample, the S–N curves of the B-M1 and B-M2 samples also display continuous declining type and fish-eye marks were always observed on the fracture surface in the case of internal fractures, which were mainly induced by inclusion. A granular bright facet (GBF) was observed in the vicinity around the inclusion. For each of the three samples, the stress intensity factor range at the boundary of inclusion (Δ Kinc ) decreases with increasing the number of cycles to failure ( N f), while the stress intensity factor range at the front of GBF(Δ K GBF) is almost constant with N f and equals to its Δ K th. This indicates that Δ K GBF might be the threshold value governing the beginning of stable crack propagation.  相似文献   

6.
The fatigue crack growth resistance of a [0/90°]2s cross-ply SCS6 fibre-reinforced Ti–6Al–4V alloy metal-matrix composite has been assessed under displacement range control (i.e. under load shedding conditions with crack extension) to investigate potential fibre degradation and the process of crack extension at room temperature, and at 450°C, in air and in vacuum. Attention is focused on initial conditions that will promote crack arrest at room temperature. Under the test conditions employed here, regions of crack growth can occur where the applied nominal stress intensity factor range (ΔK) is relatively constant. This 'constant'ΔK range is the result of a fortuitous balance between the particular test-piece geometry, loading conditions utilized, matrix crack growth and the rate of fibre fracture. It allows the influence of environment, cyclic frequency and temperature on fatigue crack growth resistance to be analysed more easily than for tests carried out under load control.
The crack growth rate remained almost constant but with some steep local retardations in growth rate in the constant ΔK region at a temperature of 450°C, while crack arrest occurred at room temperature for the same initial ΔK. The average crack propagation rate in this 'constant ΔK region' at a temperature of 450°C in air was much greater than that at a temperature of 450°C in vacuum. This indicates that environment plays an important role in the process of fibre degradation. The effect of cyclic frequency is saturated at a frequency of less than 1  Hz. The process of crack growth at various frequencies is also discussed.  相似文献   

7.
The effect of microstructure on the fatigue properties of Ti–6Al–2.5Mo–1.5Cr alloy was investigated. The experimental results for both the fatigue crack initiation and propagation behaviour, as well as the dynamic fracture toughness ( K Id ) showed clearly that a lamellar microstructure is superior to two other structures. It was found that, as in the case of steels, the initiation and subsequent growth of cracks in the titanium specimens with a sharp notch may also occur on loading levels below the threshold values of the K factor (Δ K th ) determined for long fatigue cracks. In addition, measurements by interferential-contrast of the plastic zone size on the surface of specimens revealed that the different rate of crack growth at identical values of Δ K in individual structural states can roughly be correlated with the size of the plastic zone. A general relationship between the fatigue crack growth rate and plastic zone size, the modulus of elasticity and the role of crack tip shielding is discussed.  相似文献   

8.
Abstract— A series of experiments have been conducted on cruciform specimens to investigate fatigue crack growth from circular notches under high levels of biaxial stress. Two stress levels (Δσ1= 380 and 560 MPa) and five stress biaxialities (λ=+1.0, +0.5, 0, −0.5 and −1.0; where λ=σ21 were adopted in the fatigue tests in type 316 stainless steel having a monotonic yield strength of 243 MPa. The results reveal that fatigue crack growth rates are markedly influenced by both the stress amplitude and the stress biaxiality. A modified model has been developed to describe fatigue crack growth under high levels of biaxial stress.  相似文献   

9.
Abstract— In order to evaluate the threshold value Δ K τth for mode II fatigue crack growth, a new measurement method of mode II fatigue crack growth has been developed. This method uses a conventional closed-loop tension—compression fatigue testing machine without additional loading attachments. Mode II fatigue tests for structural steel and rail steel have been carried out. This method has proved successful and has reproduced mode II fatigue fracture surfaces similar to those found in the spalling of industrial steel-making rolls. The crack length during testing was measured by an AC potential method. The relationships between d a /d N and Δ K τ and AK τth for several materials have been obtained.  相似文献   

10.
In situ SEM observations (Zhang JZ. A shear band decohesion model for small fatigue crack growth in an ultra-fine grain aluminium alloy. Eng Fract Mech 2000;65:665–81; Zhang JZ, Meng ZX. Direct high resolution in-site SEM observations of very small fatigue crack growth in the ultra fine grain aluminium alloy IN 9052. Script Mater 2004;50:825–28; Halliday MD, Poole P, Bowen P. New perspective on slip band decohesion as unifying fracture event during fatigue crack growth in both small and long cracks. Mater Sci Technol 1999;15:382–90) have revealed that fatigue crack propagation in aluminium alloys is caused by the shear band decohesion around the crack tip. The formation and cracking of the shear band is mainly caused by the plasticity generated in the loading part of a load cycle. This shear band decohesion process has been observed to occur in a continuous way over the time period during the loading part of a cycle. Based on this observation, in this study, a new parameter has been introduced to describe fatigue crack propagation rate. This new parameter, da/dS, defines the fatigue crack propagation rate with the change of the applied stress at any moment of a stress cycle. The relationship between this new parameter and the conventional da/dN parameter which describes fatigue crack propagation rate per stress cycle is given.Using this new parameter, it is proven that two loading parameters are necessary in order to accurately describe fatigue crack propagation rate per stress cycle, da/dN. An analysis is performed and a general fatigue crack propagation model is developed. This model has the ability to describe the four general type of fatigue crack propagation behaviours summarised by Vasudevan and Sadananda (Vasudevan AK, Sadananda K. Fatigue crack growth in advanced materials. In: Fatigue 96, Proceedings of the sixth international conference on fatigue and fatigue threshold, vol. 1. Oxford: Pergamon Press; 1996. p. 473–8).  相似文献   

11.
Abstract— Fatigue crack propagation was investigated in polycarbonate and glass fibre reinforced polycarbonate and the effect of stress ratio and glass fibre content determined. The addition of glass fibre increases the tensile strength, but does not always contribute to an increase in fatigue crack propagation resistance. For polycarbonate the effect of stress ratio can be partly explained by using crack closure concepts as other researchers have suggested, but for glass fibre reinforced polycarbonate this was not possible. Fractography revealed a void growth process, which occurred by decohesion at the interface of the glass fibres and the base material, which was dependent on the maximum stress intensity factor. The process of linking the voids and the main crack growth behavior depended on the stress intensity factor range, Δ K. A proposed crack propagation model can explain the effect of stress ratio on crack propagation in fibre reinforced polycarbonate.  相似文献   

12.
PROPAGATION BEHAVIOUR OF SHORT FATIGUE CRACKS IN Q2N STEEL   总被引:1,自引:0,他引:1  
Abstract— The work described in this paper characterizes short fatigue crack growth behaviour of Q2N steel having a complex microstructure and designated for pressure vessel and offshore structure applications. Short and long fatigue crack growth tests for this steel were conducted under three point bend loading conditions. It was found that, in the initial stages of growth, short cracks propagate much faster than those of long cracks when correlated with the linear elastic fracture mechanics (LEFM) parameter Δ K. A period of crack growth retardation was observed at crack lengths of approx 50 μm. The theory of the interaction between short cracks and grain boundaries fails to predict the occurrence of this deceleration minima. A new short crack deceleration mechanism is proposed based on experimental observation. Observation of the characteristic behaviour of short cracks allowed the development of a short crack growth model based on microstructural fracture mechanics analyses.  相似文献   

13.
Abstract— In this paper, the fatigue threshold Δ K th of a cracked body is studied. Unlike other approaches given in the literature, the shakedown theory is used for predicting Δ K th. A crack is considered as a sharp notch, the radius of which, at the threshold stress level, is a material constant. The threshold of crack propagation is explained as being due to shakedown of the cracked body, and a simple but reasonable model is derived. The value of Δ K th is found to be proportional to the yield stress multiplied by the square root of the effective crack tip radius. Using this model, Δ K th is calculated for some materials. Comparison of the predicted fatigue thresholds with those obtained by experiments, or by using other approaches, indicates that our model provides satisfying results.  相似文献   

14.
Abstract— —A series of tests has been carried out to investigate the effect of sequential high frequency fatigue cycles interspersed with hold times on elevated temperature crack growth rates in AISI type 304 stainless steel. Each test sequence included different combinations of fatigue cycles and hold-times. Those sequences which included the smallest number of fatigue cycles resulted in the fastest crack propagation rates. The sequence with a block of 1000 cycles and a 120min hold time had the slowest crack propagation rate, similar to that for a reference 5 Hz fatigue test. Examination of the fracture surfaces revealed alternating regions of transgranular and intergranular fracture corresponding to the respective fatigue block and hold-time period. Intergranular fracture was observed to be characteristic of maximum time-dependent and time-independent damage interaction, which was associated with those specimens subjected to sequences including a block of 50 fatigue cycles, possessing the fastest crack propagation rates. The results may be explained using a model based on fatigue-creep-environment interaction. During the hold-time a damaged zone due to oxidation induced cavitation formed at the crack tip. Depending on the stress intensity factor range, the subsequent fatigue cycles continued to extend the crack through part or whole of the remaining portion of this region. For the remainder of the fatigue block the crack propagated in its normal transgranular mode. Oxide induced closure at low Δ K levels brought about the lowest crack propagation rate for the sequence consisting of a block of 1000 cycles and a 120 min hold period.  相似文献   

15.
Influence of polycrystal grain size on ductile fracture toughness of and fatigue threshold stress intensity in Armco iron has been studied over a grain size range 40 to 1050 μm. Both ductile fracture toughness and fatigue threshold stress intensity have been found to decrease with increasing grain size and the variation in either case follows a relationship similar to that proposed by Hall-Petch for strength. The variation of toughness with grain size can be understood in terms of plastic zone size whereas the fatigue threshold behaviour in Armco iron appears to be controlled by the critical value of crack tip opening displacement range.  相似文献   

16.
The fatigue crack growth rate, fracture toughness and fatigue S-N curve of 2124-T851 aluminum alloy at high cycle fatigue condition were measured and fatigue fracture process and fractography were studied using optical microscopy (OM), X-ray diffraction (XRD) technique, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that at room temperature and R = 0.1 conditions, the characteristics of fatigue fracture could be observed. Under those conditions, the fatigue strength and the fracture toughness of a 2124-T851 thick plate is 243 MPa and 29.64 MPa · m1/2, respectively. At high cycle fatigue condition, the higher the stress amplitude, the wider the space between fatigue striations, the faster the rate of fatigue crack developing and going into the intermittent fracture area, and the greater the ratio between the intermittent fracture area and the whole fracture area.  相似文献   

17.
WC–Co cemented carbides with different WC grain sizes and Co binder contents were sintered and fabricated. The three-point bending specimens with a single edge notch were prepared for tests. In the experiments, the mechanical properties of materials were investigated under static and cyclic loads (20 Hz) in air at room temperature. The fatigue behaviors of the materials under the same applied loading conditions are presented and discussed. Optical microscope and scanning electron microscopy were used to investigate the micro-mechanisms of damage during fatigue, and the results were used to correlate with the mechanical fatigue behavior of WC–Co cemented carbides. Experimental results indicated that the fatigue fracture surfaces exhibited more fracture origins and diversification of crack propagation paths than the static strength fracture surfaces. The fatigue fracture typically originates from inhomogeneities or defects such as micropores or aggregates of WC grains near the notch tip. Moreover, due to the diversity and complexity of the fatigue mechanisms, together with the evolution of the crack tip and the ductile deformation zone, the fatigue properties of WC–Co cemented carbides were largely relevant with the combination of transverse rupture strength and fracture toughness, rather than only one of them. Transverse rupture strength dominated the fatigue behavior of carbides with low Co content, whilst the fatigue behavior of carbides with high Co content was determined by fracture toughness.  相似文献   

18.
Quantitative predictions of the influence of yield strength and stress ratio, R , on the physically small crack fatigue threshold stress intensity, Δ K 0(s), are presented. It is shown that at R = 0 to -1, although the threshold stress Δ0 increases, the threshold stress intensity, Δ K 0(s), decreases with increasing yield strength. Moreover, a lower bound value, Δ K 0(s)(min) is shown to have a constant value, irrespective of the strength and stress ratio. For a given strength, Δ K 0(s), decreases with increasing R in the range -1 R 0.6 and attains a constant low value for R > 0.6. Predicted values of Δ K 0(s) are in good agreement with experimental data for steels. The formation and length of non-propagating fatigue cracks, a np, are also discussed. The methods suggested for estimating Δ K 0(s) and a np may be found useful in design procedures.  相似文献   

19.
Abstract— Fatigue crack propagation rates and the fatigue threshold of HT80 steel were measured by maintaining the maximum load during the whole period of random loading in order to prevent fatigue crack closure. The random loading pattern involved 62 level block loadings in which the waveform was approximated to the Rayleigh distribution of peaks. The fatigue crack propagation rates under random loading were well predicted from those obtained from constant amplitude loading and assuming a linear cumulative damage law. That is, da/dn = C {Δ K meq−Δ K mth} where the equivalent stress intensity factor, Δ K eq={= n iΔ K mi/d n i}1/ m , where ni = 0 for Δ K i≤Δ K th, or ni = ni for Δ Ki > Δ K th.  相似文献   

20.
The previously proposed model of unstable fatigue crack growth is used to explain a large (in comparison with other mechanical characteristics) scatter of static fracture toughness for 15Kh2MFA and 15Kh2NMFA steels at temperatures below the tactile-brittle transition temperature. The results show that for the materials for which Kfc 1 < KIc the critical stress intensity factor KIc depends on the specific energy of inelastic strain W at the tip of the initial fatigue crack in its formation stage. The value of W is a function of the number of load cycles (in the conditions with a constant range of the stress intensity factor K) as a result of irregular fatigue crack growth. Here Kfc 1 is the minimum cyclic fracture toughness. A method is proposed of evaluating the minimum fracture toughness of the material in static loading based on inspection of the process of irregular fatigue crack growth in the stage of crack initiation.Translated from Problemy Prochnosti, No. 2, pp. 10–16, February, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号