首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Spectral analysis of the infrared radiation emitted from thin films of resin transferred from the surface of high performance aerospace carbon fibreepoxy composite prepregs and heated to the cure temperature allows the cure chemistry and kinetics to be monitored in real time. Quantitative spectra with excellent signal-to-noise ratio are obtained by heating a thin resin film on a platinum hotplate fitted to the external optics of a Fourier transform infrared (FTIR) spectrometer and referencing the resulting emission (with the platinum emission subtracted) to a graphite black body at the same temperature. The resulting spectra are identical to absorption spectra and the quantitative features of the analysis are demonstrated by the appearance of isosbestic points during the curing reactions, so indicating that concentration profiles of the reacting species may be obtained. From the initial rate of amine and epoxy consumption, activation energies of 75kJ mol−1 were obtained for both functional groups in the uncatalysed resin 4,4′-tetraglycidyl diamino diphenyl methane (TGDDM) with 27% 4,4′-diaminodiphenylsulfone (DDS), while values of 74 and 89kJ mol−1 were obtained for amine and epoxy consumption from the TGDDM/DDS prepreg catalysed with boron trifluoride monoethylamine (Hercules 3501–6), consistent with homopolymerization occurring in the prepreg as well as amine–epoxy addition. Analysis of the FTIR emission at 177°C of resin from prepreg aged up to 90h at 23°C and 55% relative humidity shows a lowering of epoxy and amine concentration and a higher rate of cure, consistent with the formation of catalytic species. This technique may be used to monitor changes in surface properties such as tack and resin transfer, in addition to changes in the cure profile of the aged epoxy propreg.  相似文献   

2.
The effect of some types of xylene formaldehyde on epoxy resin adhesive is studied. Xylene formaldehyde resin or modified xylene formaldehyde resins are mixed into liquid epoxy resin and curing properties of the blends, their adhesive properties and the dispersion state of xylene formaldehyde resin in cured adhesive film are examined. The results obtained are as follows.

1) Generally, by the addition of xylene formaldehyde resins, the degree of curing of blends are decreased, but pot life is prolonged, and tensile shear strength of steel bonds is increased.

2) It is observed that effects of the amount of xylene formaldehyde resins and curing condition on tensile shear strength vary with the kind of xylene formaldehyde resin, because of the difference in chemical structure of xylene formaldehyde resins and their reactivity to epoxy resin.

3) It is found that a limited region of compatibility, between 80 and 100 phr, exists for 100% xylene formaldehyde resin in epoxy resin. It is also found that joint strength is reduced with higher viscosity and molecular weight of 100% xylene formaldehyde resin in the case of 80 phr blends, and that these results have some relation to the dispersion state of xylene formaldehyde resin in epoxy resin, judging from the cured adhesive film observed under a phase contrast microscope.  相似文献   

3.
Humidity absorbed by epoxy film adhesives during low temperature storage or exposure to atmosphere may result in reversible changes and irreversible modifications. Vacuum treatment may partially remedy the reversible changes. The consequences of vacuum drying are manifested in enhancement of both the peel and shear properties of bonded joints (Part I and Part II of this series of papers) and the thermal, physical and mechanical properties of the bulk adhesive, characterized in the present study.

Experimental results have shown that the bulk properties of structural epoxy based adhesives are highly correlated with the aging processes caused by water absorption in the prepolymerized adhesive. Applying the vacuum process is harmful to fresh unaged adhesive due to devolatization of low molecular species of the film adhesive.

The characterization of bulk properties for the purpose of following the aging and recovery processes is advantageous, since the bulk is independent of geometrical and interfacial effects which dominate in the case of property evaluation of the adhesive in a bonded joint.  相似文献   

4.
The durability properties of bonded lap shear joints made from an epoxy/dicyandiamide adhesive and zinc, zinc-coated steel, two different aluminium alloys or cold-rolled steel metal coupons have been investigated. The influence of the dicyandiamide content of the adhesive on the durability properties-has been assessed by salt spray testing or by storing the joints in water at 70°C or 90°C for periods of time up to five weeks. The degradation products formed during ageing of the epoxy adhesive in water have been investigated using high performance liquid chromatography (HPLC) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). The degradation mechanisms of aluminium/epoxy bonded joints have been thoroughly studied using X-ray photoelectron spectroscopy.

The performances of the bonded joints under a pure corrosive environment have been found to be little influenced by the quantity of dicyandiamide in the adhesive. When the bonded joints were aged in hot water, the stability of the interface toward an excess of dicyandiamide directly followed the sensitivity of the oxide layer at high pH values. Optimal durability properties without peel strength losses of the adhesive were aehieved both with zinc and aluminium-coated substrates by reducing the quantity of dicyandiamide in the epoxy adhesive by 20% (the initial dicyandiamide content in the commercial adhesive being ca. 9%, with respect to the epoxy resin).  相似文献   

5.
Room Temperature curing compositions of epoxy resins with high temperature service capability (95-120°C) were formulated and evaluated. The compositions were based on selected high functionality atomatic epoxy polymers and multicomponent poly amine curing agent systems. Toughening was achieved by addition of a rubbery phase either by prereaction of the epoxy resin with carboxyl terminated (CTBN) or by amine terminated (ATBN) poly butadiene acrylonitrile. The latter elastomeric component served as a part of the poly amine curing agent.

Best results were achieved with an adhesive formulation comprising tetra glycidyl-4-4'-diaminodiphenylmethane (TGDDM) and triglycidyl ether of p-aminophenol with triethylenetetramine and addition of ATBN with a felt carrier.

Lap shear strengths of aluminum/aluminum specimens primed by silane coupling agent in the order of 22 MPa at 25°C and 11 MPa at 120°C with T-Peel strengths of 1.6N/mm at 25°C and 0.52 N/mm at 120°C, were obtained.

The thermal behaviour and transitions, the chemical and mechanical properties, the microstructure and morphology of the selected adhesive formulation were studied, using DSC, Gehman, FTIR, mechanical testing and SEM analysis, respectively.

Experimental results showed that the selected compositions could develop good high temperature (120°C) properties while cured at room temperature. Furthermore, their high temperature performance compares favorably or even exceeds that of commercially available room-temperature-curing adhesive compounds, and are competitive with elevated temperature cured film adhesives.  相似文献   

6.
The static tensile load bearing capability of adhesively-bonded tubular single lap joints calculated using linear mechanical adhesive properties is usually far less than the experimentally-determined one because the majority of the load transfer of adhesively-bonded joints is accomplished by the nonlinear behavior of the rubber-toughened epoxy adhesive

In this paper, both the nonlinear mechanical properties and the residual thermal stresses in the adhesive resulting from joint fabrication were included in the stress calculation of adhesively-bonded joints. The nonlinear tensile properties of the adhesive were approximated by an exponential equation which was represented by the initial tensile modulus and ultimate tensile strength of the adhesive.

From the tensile tests and the stress analyses of adhesively-bonded joints, a failure model for adhesively-bonded tubular single lap joints under axial loads was proposed.  相似文献   

7.
The optical, mechanical and durability performance of selected epoxy, polyester, UV-curable acrylic, cyanoacrylate and silicone adhesives were evaluated and measured for bonding applications of optically transparent glasses in the visible and infra-red regions of the electromagnetic spectra.

From the initially selected adhesives only the UV-curable modified acrylic, two-component silicone and room temperature cured epoxy, were found to be of high performance characteristics, having good transmission properties and enhanced endurance in a combination of heat and humidity and following thermal cycling.

Sodium chloride substrates served as adherends for the transmission characterization of the optical adhesives, due to their high transmission properties in the 0.4-10 m μ spectral range. A modified lap shear specimen was designed for studying the mechanical properties and failure mechanisms of the adhesives and their durability in a humid and not environment. Finally, a two-piece glass doublet was used for investigating the optomechanical characteristics of the optical adhesive following environmental conditioning and thermal shock cycling.

Due to the inherent C-C bond, polymer adhesives are limited in utility, as far as transparency is concerned, close to 3.5 μm and in most of the 8-12 μm spectral range.  相似文献   

8.
Factors Affecting the Durability of Ti-6Al-4V/Epoxy Bonds   总被引:1,自引:0,他引:1  
Factors influencing the durability of Ti-6Al-4V/epoxy interphases were studied by determining chemical and physical properties of Ti-6Al-4V adherend surfaces and by characterizing the strength and durability of Ti-6Al-4V/epoxy bonds.

Ti-6Al-4V adherend surfaces were oxidized either by chemical etch or anodization. Four principal pretreatments were studied: chromic acid anodization (CAA), sodium hydroxide anodization (SHA), phosphate fluoride acid etch (P/F) and TURCO basic etch (TURCO). The oxides were characterized by SEM, STEM, profilometry, contact angles and XPS.

All adhesive bonding was carried out using a structural epoxy, FM-300U. Both lap shear and wedge test samples were tested in hot, wet environments. The results lead to the conclusion that the interfacial area between the adhesive and adherend is the primary factor affecting bond durability.  相似文献   

9.
Molecular orbital calculations have been used to model the interfacial reactions that occur during bond formation of epoxy adhesives to galvanized steel. The theoretical calculations were applied to interfacial reactions of generic dicyandiamide-crosslinked epoxy adhesives on zinc surfaces. Semi-empirical MNDO molecular orbital calculations were used to model the reduction reactions. The calculations were used to predict the most stable tautomer of dicyandiamide as well as to suggest the structure of the most likely zinc-dicyandiamide reduction products. The results of the calculations are consistent with infrared spectroscopic studies of dicyandiamide reduction on zinc surfaces that suggest the formation of carbon-nitrogen multiply bonded moieties. An MNDO geometry optimization of dicyandiamide suggests that one tautomeric form of dicyandiamide, the diamino form, is the most stable structure by about 9.3 kcal/mol. The optimized geometry of the diamino form of dicyandiamide is nearly planar, suggesting that the molecule has a π-system largely isoelectronic with butadiene. The symmetry and magnitude of the coefficients for the atomic orbitals of the lowest unoccupied molecular orbital (LUMO) of the diamino form of dicyandiamide are consistent with the formation of a radical anion reduction product which would afford a carbodiimide intermediate on the zinc surface.  相似文献   

10.
The accurate calculation of the stresses and torque capacities of adhesively bonded joints is not possible without understanding the failure phenomena of the adhesive joints and the nonlinear behavior of the adhesive.

In this paper, an adhesive failure model of the adhesively bonded tubular single lap joint with steel-steel adherends was proposed to predict the torque capacity accurately.

The model incorporated the nonlinear behavior of the adhesive and the different failure modes in which the adhesive failure mode changed from bulk shear failure, via transient failure, to interfacial failure between the adhesive and the adherend, according to the magnitudes of the residual thermally-induced stresses from fabrication.  相似文献   

11.
Two commercially available amine-cured epoxy resin formulations were studied under different environmental conditions with regard to the surface tension evolution using axisymmetric drop shape analysis (ADSA). By employing a new strategy, ADSA was used to monitor simultaneously the surface tension and the density of these reactive mixtures from sessile drops. The kinetics of the bulk reactions were quantified by Fourier transform infrared (FTIR) spectroscopy, and the changes in the molecular composition of the surface region were studied by X-ray photoelectron spectroscopy (XPS).

In both formulations, the surface tension values of the amine hardeners were lower than those of the epoxy resins. For one system, the surface tension of the mixture was similar to the surface tension of the hardener. In this case, the hardener migrates to the surface and determines the surface tension of the mixture, as could be proved by XPS measurements. In the other case, the surface region contained only a very small amount of nitrogen, indicating that the nitrogen-containing groups of the hardener were not enriched in the surface region of this mixture. Its surface tension was similar to that of the pure epoxy resin.

In a controlled argon atmosphere, the surface tension of the reactive epoxy-amine systems considered here changed very little as the curing reaction proceeded. The time-dependent changes of the surface tension of the mixtures were caused by environmental factors, particularly the presence of carbon dioxide and water. Such factors can produce complicated surface tension responses due to surface reactions with the amine hardener. The extent of these changes can be controlled by the migration of the hardener to the surface region.  相似文献   

12.
Carboxyl‐terminated butadiene acrylonitrile (CTBN) liquid rubber/epoxy (diglycidyl ether of bisphenol‐A: DGEBA) / diamino diphenyl methane (DDM) resins, in which CTBN was 60 wt % as the major component, were formulated to evaluate the damping and adhesive properties. In cases where acrylonitrile (AN) was 10~18 mol % as copolymerization ratio in CTBN, the blend resins showed micro‐phase separated morphologies with rubber‐rich continuous phases and epoxy‐rich dispersed phases. The composite loss factors (η) for steel laminates, which consisted of two steel plates with a resin layer in between, depended highly on the environmental temperature and the resonant frequencies. On the other hand, in the case where AN was 26 mol % in CTBN, the cured resin did not show clear micro‐phase separation, which means the components achieve good compatibility in nano‐scale. This polymer alloy had a broad glass‐transition temperature range, which resulted in the high loss factor (η > 0.1) for the steel laminates and excellent energy absorbability as the bulk resin in a broad temperature range. Also the resin indicated high adhesive strengths to aluminum substrates under both shear and peel stress modes. The high adhesive strengths of the CTBN/epoxy polymer alloy originated in the high strength and the high strain energy to failure of the bulk resin. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
Ultrasonic evaluation of AS4/3501-6 graphite/epoxy composites and Hercules 3501-6 epoxies with different curing conditions has been carried out. A differential scanning calorimeter and a dynamic mechanical analyzer were used to characterize the cure status of these materials. The anisotropic elastic moduli, through-thickness longitudinal wave dispersion and attenuation were measured by different ultrasonic techniques. Effects of curing conditions on the mechanical properties of the composites and corresponding epoxies were discussed.  相似文献   

14.
Factors influencing the durability of Ti-6Al-4V/metal alkoxide/epoxy interphases were determined by studying the chemical composition of three metal alkoxides and evaluating the bond durability of Ti-6Al-4V/epoxy bonds primed with these materials. The three alkoxides were sec-butyl aluminum alkoxide, tetra-isopropyl titanate and tetra-n-butyl titanate.

Because adhesive bonds made using phosphate fluoride (P/F) pretreated Ti—6Al—4V substrates were not durable, P/F treated Ti—6Al—4V was chosen as the substrate for testing the possible durability enhancement by the titanium and aluminum alkoxide coatings. Sec-butyl aluminum alkoxide significantly enhanced the bond durability of the P/F pretreated bonds, while the titanium alkoxide primers showed no improvement in durability. The locus of failure and infrared studies indicated the enhancement in durability by the aluminum alkoxide was due to the high concentration of hydroxyl groups on the alkoxide surface available to interact with the epoxy adhesive.  相似文献   

15.
The effects of corrosive environments on adhesive bonds to electro-galvanized, zinc/aluminum alloy coated, coated electro-galvanized, and cold-rolled steels have been investigated. Bonds prepared using a rubber-modified dicyandiamide-cured epoxy adhesive, an epoxy-modified poly(vinyl chloride)-based adhesive, an acrylic-modified poly(vinyl chloride)-based adhesive a one-part urethane adhesive, and a two-component epoxy-modified acrylic adhesive were exposed under no-load conditions to constant high humidity or cyclic corrosion exposure for 50 days or 50 cycles (10 weeks) respectively.

Over the course of this study, exposure to constant high humidity had little effect on lap shear strength for any of the systems studied. Bond failures were initially cohesive, and with few exceptions remained so.

Bond strength retention under the cyclic corrosion exposure conditions employed was strongly dependent on adhesive composition and on substrate type. On galvanized substrates, lap shear strengths for the poly(vinyl chloride)-based adhesives were reduced by 90-100% during the course of the corrosion exposure, and a change in the mode of bond failure (from cohesive to interfacial) was observed. On the coated electro-galvanized steel substrate, the poly(vinyl chloride)-based adhesives showed about 50% retention in lap shear strength and a cohesive failure throughout most of the corrosion test. The dicyandiamide-cured epoxy adhesive used in this study generally showed the best lap shear strength retention to zinc-coated substrates; bonds to cold-rolled steel were severely degraded by corrosion exposure. The performance of the acrylic and urethane adhesives were intermediate to the dicyandiamide-cured epoxy and poly(vinyl chloride)-based adhesives in strength retention.  相似文献   

16.
Polycondensation kinetics of epoxy-amine model systems were investigated with inverse gas chromatography. The results obtained were applied to the study of cross-linking kinetics of two epoxy prepolymers, tetraglycidyl diamino diphenyl methane and diglycidyl ether of bisphenol A, with diamino diphenyl sulphone. Data furnished by inverse gas chromatography showed zones of gelation and of vitrification. Based on kinetics established by isothermal microcalorimetry, it was possible to determine reaction advancement in these transition zones. The results show that advancement of both reaction systems to the transition points T1 and T2 is very sensitive to curing temperature and to the stoichiometry of the mixture. Finally, the vitreous transition temperatures of the cross-linked systems were determined and compared to those determined with differential scanning calorimetry.  相似文献   

17.
The bonded shear creep and constant strain rate behavior of zero, one, and three percent end capped Thermoplastic Polyimidesulfone adhesive were examined at room and elevated temperatures. End capping was accomplished by the addition of phthalic anhydrides.

The viscoelastic Chase-Goldsmith and elastic nonlinear relations gave a good fit to the experimental stress strain behavior. Ultimate stress levels and the safe levels for creep stresses were found to decrease as molecular weight was reduced.

The primary objective was to determine the effects of molecular weight on the mechanical properties of the adhesive in the bonded form. Viscoelastic and nonlinear elastic constitutive equations were utilized to model the adhesive. Crochet's relation was used to describe the experimental creep failure data. The effects of molecular weight changes on the above mentioned mechanical behavior were assessed.  相似文献   

18.
The durability of epoxy-aluminium joints that use a homopolymerised epoxy resin was studied, and the effects of relative humidity, temperature, and salt concentration were analysed. The adhesive properties were measured by lap-shear tests, and the water uptake of the epoxy resin was determined by gravimetric measurements. Ageing and degradation effects on the epoxy resin and on the aluminium substrates were also analysed.

The homopolymerised epoxy resin absorbs little water (1.5 wt%) because of its nonpolar network structure. The water uptake is enhanced by increasing relative humidity and temperature; however, the joint strength remains constant because of epoxy plasticization. A saline environment is damaging to the adhesive joints, because of metal corrosion, but was not significantly harmful to the epoxy resin, because of a lower diffusion coefficient of salt water. The Tg decrease of the epoxy adhesive due to water absorption depends only on the amount of absorbed water and is independent of the hydrothermal ageing conditions.  相似文献   

19.
A new manufacturing method for the cup-type composite flexspline for a harmonic drive was developed using adhesive joining technology to obviate the manufacturing difficulty of the conventional one-piece cup-type steel flexspline and to improve the dynamic characteristics of the flexspline.

In this method, the boss, tube and tooth sections of the flexspline were designed and manufactured separately, and adhesively bonded. The tube section was manufactured with high strength carbon fiber epoxy composite material and its dynamic properties were compared with those of the conventional steel flexspline.

The torque transmission capability of the adhesively-bonded joint was numerically calculated using the nonlinear shear stress-strain relationship which was represented by an exponential form.

From the test results of the manufactured composite flexspline and the conventional steel flexspline, it was found that the manufactured composite flexspline had better torque transmission characteristics. Also, it was found that the damping capacity of the composite flexspline was considerably improved.  相似文献   

20.
With the increased use of graphite-reinforced composites as replacements for metals has come concerns about durability under harsh environmental conditions. Degradation is expected to begin on the surface and progress toward the center of the resin as a function of time, and reflectance infrared techniques are ideal for monitoring structural changes on surfaces. The present paper describes the application of Fourier transform infrared spectroscopy using internal reflectance elements to the determination of the degree of environmental aging of Hercules 3501?6 resin. The results indicate that degradation occurs via hydrolysis, oxidation, and dehydration reactions at specific locations in the polymer chain. Of special interest is the unique reaction of the tertiary amine of the epoxy portion of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号