首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
Ca对ZA63合金组织和力学性能的影响   总被引:1,自引:0,他引:1  
通过合金制备、微观分析和力学性能测试等方法研究了Ca对ZA63合金微观组织和力学性能的影响.结果表明,当加入Ca元素后,舍金晶粒细化,半连续网状的τ相变为细小粒状或棒状,颗粒状τ相更为细小,并形成了细小高熔点Al_2Ca相.随着Ca含量的增加,固溶时效态合金在室温、150℃和175℃温度下的抗拉强度和延伸率基本上呈先升高后降低的趋势.当Ca含量为1.0%时,合金在各温度下的抗拉强度和延伸率都达到最大值.  相似文献   

2.
ZA53镁合金的砂型铸造组织和力学性能研究   总被引:3,自引:1,他引:2  
研究发现砂型铸造镁合金ZA53的主要相组成为δ-Mg基体相和τ[Mg32(Al,Zn)49]化合物相,τ相以半连续网状沿δ相晶界分布。对ZA53合金进行的固溶处理试验发现,在335℃固溶17h淬火后,合金室温抗拉强度和塑性得到大幅提高。在343℃固溶17h淬火后,合金组织完全转变为单相固溶体,合金的室温力学性能较好,σb=245MPa,伸长率为12%,合金的拉伸断口形貌由混合型断口转变为韧性断口。  相似文献   

3.
利用SEM、X射线衍射、拉伸性能测试、显微硬度测试等手段研究了合金元素Ca及时效处理对ZA102镁合金铸态组织和力学性能的影响。结果表明1%的Ca对合金铸态组织的改善效果最为明显,τ相(Mg32(Al,Zn)49)由断续网状变为细小的块状且分布弥散,ε相(MgZn)变得更加细小,同时形成了分布弥散的Al2Ca强化相,此时合金的抗拉强度和拉伸性能达到最大值,抗拉强度达到174 MPa、伸长率达到6%、硬度达到86 HV。如果Ca的含量超过1%合金的晶粒开始变大并且合金元素有偏聚的趋势,并导致其力学性能降低。对铸态试验合金在360℃×10 h+180℃(T6)下进行时效处理,结果表明经过T6处理后能进一步改善合金的组织和力学性能。  相似文献   

4.
在Bc路径下进行了Mg-6Zn-3Al(ZA63)镁合金不同道次等通道挤压,采用显微组织观察、拉伸试验和高温阻尼测试研究了合金的显微组织、力学性能及阻尼性能。结果表明:铸态ZA63合金主要由α-Mg、呈半连续网状和部分弥散颗粒分布在晶界处及基体的τ相(Mg_(32)(Zn,Al)_(49))组成,随着变形道次的增加,合金抗拉强度和屈服强度先上升后下降,而伸长率逐渐提高。随着测试温度的升高,合金的阻尼值总体升高,且2道次时阻尼性能最好。阻尼机制在150℃左右以晶界滑动阻尼为主,在再结晶温度左右以再结晶内耗为主。  相似文献   

5.
喷射沉积ZA35合金的组织与力学性能   总被引:6,自引:1,他引:6  
李荣德  王盈  刘敬福  于宝义  李晨曦 《铸造》2007,56(4):353-355,371
采用了喷射沉积技术制备ZA35合金,并添加合金元素Mn,研究了其成形后的组织与力学性能。结果表明,喷射沉积锌铝合金的抗拉强度同金属型铸造相比,室温时高出41.4%,150℃时高出53.3%,180℃时高出63.5%。伸长率随温度升高而明显增加。其晶粒细小,组织分布均匀,ε相和Mn相化合物分布于晶界和枝晶间,能够抑制枝晶的发展,细化组织。  相似文献   

6.
刘敬福  杨光  崔佳 《热加工工艺》2012,41(24):180-182,185
利用X射线衍射和金相显微镜等手段研究了不同固溶时间下ZA35-01Ti合金的组织,并测定合金的力学性能,观察了合金的断口形貌,研究固溶处理对ZA35-01Ti合金组织和力学性能的影响.结果表明:ZA35-0.1Ti合金在385℃下随固溶时间延长力学性能先提高后下降,在固溶时间为5h时,合金抗拉强度为396.0MPa,伸长率为3.71%,布氏硬度为140HBS,力学性能达到最优;合金经385℃×5h固溶处理后,合金元素Ti全部固溶于合金中,固溶强化效果显著.  相似文献   

7.
研究了镝元素添加对Mg-4Y-3Nd-0.4Zr合金显微组织和力学性能的影响,并采用扫描电镜和透射电镜观察合金的显微组织。结果表明,铸态合金中的共晶相和方形块状Mg-RE相分别为Mg5RE相和Mg3RE17相,主要分布在晶界位置。经固溶处理后,Mg5RE共晶相溶入基体中,而Mg3RE17金属间化合物依然存在。峰时效后,添加镝元素的合金Mg-RE析出相分布更均匀,显著提高了合金的室温和高温抗拉强度,但伸长率略有下降。  相似文献   

8.
研究了Ca的加入对金属型铸造 ZA104 镁合金铸态组织和力学性能的影响。结果表明:微合金化元素 Ca 参与了 ZA104 试验合金强化相的形成,随 Ca 含量的增加,组织由不连续、或半连续层片状、细小网格状逐渐演变成连续粗大的肋骨网状,强化相则由φ相和τ相逐渐转变为τ1、τ2两相。合金的布氏硬度值随Ca含量增加呈线性上升,但Ca含量≤0.3%(质量分数)时上升急速,而>0.3%以后上升趋势相对缓慢;钙元素的加入,通过固溶以及形成高温强化相的形式,有效提高了试验合金的高温拉伸性能,且当添加 0.3%Ca 时,合金的抗拉强度在室温与高温状态下最佳,分别为203和190 MPa,此时,延伸率也达最大值17.3%  相似文献   

9.
研究了铝合金中RE含量及热处理工艺对Al-Mg-Si合金板材的显微组织、力学性能的影响。研究表明,添加一定量的RE可以明显改善板材的力学性能,在T4P+烘烤状态下,RE含量为0.2%的合金具有最高的强度,屈服强度达到281MPa,比不含RE的合金高出约40MPa;抗拉强度达到373MPa。表明加入0.2%的RE后合金的强度和塑性都有很大的提高。对于RE含量为0.2%的合金,T4+烘烤条件下,虽然板材伸长率较高,但板材的屈服强度和抗拉强度分别较T6态低120MPa和40MPa;T4P+烘烤处理后,组织中出现了细密的析出相,抗拉强度非常接近于T6态,伸长率较T6态提高了4%,表明预时效处理后更能发挥RE对合金性能的有益作用。  相似文献   

10.
通过金属型铸造制备新型Mg-6Zn-3Al(ZA63,质量分数,%)镁合金,并利用光镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)和力学性能测试研究ZA63合金在铸态、固溶和时效处理后显微组织和力学性能的变化规律。结果表明:合金铸态组织主要由基体α-Mg、晶界处呈连续或半连续分布的(α-Mg+Mg_2Zn_3+Mg_7Zn_3+Mg_(32)(Al,Zn)_(49))共晶和晶内孤立的颗粒相组成。合金在350℃固溶12~36 h时,随着时间延长,固溶效果逐渐增强,且在28 h时获得了较好的组织和241 MPa的抗拉强度及11.12%的伸长率。随后在180℃时效6~72 h后,合金的抗拉强度进一步提高,力学性能随保温时间延长呈先增加后减小的趋势,其中时效24 h时同时出现抗拉强度、伸长率和硬度的峰值298 MPa、9.78%和96.3 HV,比铸态的214 MPa、8.54%、62.2 HV分别提高39.25%、14.52%和54.82%。180℃时效24 h后,析出相的主要形态有板条状和短棒状。  相似文献   

11.
The effects of rare earth (RE) elements Y and Nd on the microstructure and mechanical properties of Mg-6Al magnesium alloy were investigated. The results show that a proper level of RE elements can obviously refine the microstructure of Mg-6Al magnesium alloys, reduce the quantity of/β-Mg17Al12 phase and form Al2Y and AI2Nd phases. The combined addition of Y and Nd dramatically enhances the tensile strength of the alloys in the temperature range of 20-175℃. When the content of RE elements is up to 1.8%, the values of tensile strength at room temperature and at 150℃ simultaneously reach their maximum of 253 MPa and 196 MPa, respectively.The main mechanisms of enhancement in the mechanical properties of Mg-6Al alloy with Y and Nd are the grain refining strengthening and the dispersion strengthening.  相似文献   

12.
微量Sc对Mg-7Gd-3Y合金组织及力学性能的影响   总被引:1,自引:0,他引:1  
利用光学显微镜、扫描电镜和XRD,分析研究了微量Sc对Mg-7Gd-3Y铸态合金组织及其室温和200℃力学性能的影响.结果表明,在合金中加入0.5%的Sc,促进了Mg24(Y,Gd)5和Mg5(Gd,Y)相的析出,降低Gd在Mg24(Y,Gd)5相中的相对含量,合金的室温和200℃时的抗拉强度分别提高了25 MPa和18 MPa;屈服强度分别提高了28 MPa和22MPa;伸长率分别提高了18.3%和37.8%.  相似文献   

13.
The effects of rare earth(RE) elements Y and Nd (w(Y)/w(Nd)=3:2) with total content of 1%-4% on microstructures and elevated temperature mechanical properties of AZ81 magnesium alloy were investigated. The results show that, proper content of rare earth elements makes the microstructures of AZ81 magnesium alloy refine obviously and the quantity offl-MglTAll2 phases reduce, and Al2Y and Al2Nd form. After solid solution treatment, with increasing content of rare earth elements, the tensile strength and elongation of the alloys (at room temperature, 150 ℃ and 250 ℃) increase first, then decrease. When the content of rare earth elements is up to 2%, the values of tensile strength at room temperature and 150 ℃ are up to their maxima simultaneously, 282 MPa and 212 MPa, respectively. Meanwhile, the values of elongation at room temperature and at elevated temperature are also up to their maxima, 13% and 15%, respectively.  相似文献   

14.
许春香  张志玮  鞠辉  贾亚斌 《铸造》2012,61(6):661-665
采用OM、XRD、SEM、EDS和高温拉伸试验机研究了不同Ho含量对ZA52合金的微观组织与力学性能的影响.结果表明,加入Ho能够细化基体组织,使Mg32 (Al,Zn)40相由半连续网状结构转变为孤岛状或颗粒状,同时会生成花瓣状和块状的Al2Ho相.当Ho含量超过0.5%时,花瓣状Al2Ho逐渐消失,块状相逐渐增多,随着Ho含量的增加,常温和高温下的抗拉强度和伸长率都有了显著的提高.其中添加Ho含量为1.5%时,常温抗拉强度σb和伸长率δ达到最大值分别为234.3 MPa、13.6%.高温抗拉强度σb为117.5 MPa,高温伸长率无明显变化.加Ho后的合金200℃下断裂方式属于以韧性为主的准解理断裂和韧窝断裂的混合断裂形式.  相似文献   

15.
The Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy ingot and sheet were prepared by casting and hot extrusion techniques,and the microstructure,age hardening behavior and mechanical properties were investigated.The results show that the as-cast alloy mainly containsα-Mg solid solution and compounds of Mg5RE and Mg24RE5(RE=Gd,Y and Nd)phases.The grain size is refined after hot extrusion,and the Mg5RE and Mg24RE5 compounds are broken during the extrusion process.The extruded alloy exhibits remarkable age hardening response and excellent mechanical properties in the peak-aging state.The ultimate tensile strength,yield strength and elongation are 310 MPa,201 MPa and 5.8%at room temperature,and 173 MPa,133 MPa and 25.0%at 300℃,respectively.  相似文献   

16.
The effects of trace Ag element on the precipitation behaviors and mechanical properties of the Mg−7.5Gd− 1.5Y−0.4Zr (wt.%) alloy by means of tensile test, X-ray diffractometry, scanning electron microscopy, electron backscattered diffractometry, and scanning transmission electron microscopy. There is an unusual texture (〈0001〉//extrusion direction) in the extruded Mg−Gd−Y−Zr alloys containing 0.5 wt.% Ag. During the aging periods at 225 °C, the addition of the trace Ag does not form new precipitates, just accelerates aging kinetics, and refines β′ precipitates, thereby increasing the number density of the β′ precipitates by Ag-clusters. Moreover, the Mg−Gd−Y−Zr alloy containing 0.5 wt.% Ag shows the most excellent synergy of strength and plasticity (408 MPa of ultimate tensile strength, 265 MPa of yield strength, and 12.9% of elongation to failure) after peak-aging.  相似文献   

17.
采用EB炉一次熔炼TC4合金扁锭作为直轧坯料,在4200 mm宽厚板轧机上成功制备出规格46 mm×2650 mm×8700 mm的低成本TC4合金宽厚板,研究了退火温度对低成本TC4合金板材显微组织和力学性能的影响。结果表明:EB熔炼TC4合金扁锭经过两火换向轧制,粗大铸态组织得到充分破碎,热轧态TC4合金板材显微组织中等轴α或条状α含量较高,横纵向室温拉伸性能差异小,横向室温冲击吸收能量小于纵向,横纵向心部强度均高于表层。TC4合金板材经750~900 ℃退火,横纵截面为等轴组织,经950 ℃退火,横纵截面为双态组织,经980 ℃退火,横截面为双态组织,纵截面为魏氏组织。随着退火温度升高,TC4合金板材抗拉强度和规定塑性延伸强度呈下降趋势,伸长率基本不变,室温冲击吸收能量先升高后降低,900 ℃退火后,强度、伸长率和冲击吸收能量达到最佳匹配。  相似文献   

18.
1 INTRODUCTIONZinc aluminumalloyZA2 7hasthebestcombinedproperties,especiallywearresistance ,amongzincbasedalloyscontainingahighcontentofalu minum[1] .Widerangesofapplicationshavebeenfoundforthisalloy ,andforbearingmaterialsitre placestinandaluminumbronze .Ino…  相似文献   

19.
Mg–7 mass%Gd–x mass%Y (x = 0, 1, 3 and 5) alloys were prepared by casting method, and the microstructures, age hardening behavior and mechanical properties have been investigated. The results show that the addition of Y to the binary Mg–7Gd alloy could reduce the grain size of the as-cast alloys, and enhance the age hardening response and improve mechanical properties during the investigated temperature range. The Mg–7Gd–5Y alloy exhibits maximum ultimate tensile strength and yield strength at peak hardness, and the values are 258 and 167 MPa at room temperature, and 212 and 140 MPa at 250 °C, respectively, which is about 1.8 times as high as the Mg–7Gd binary alloy. When x is more than 3, the amount of Mg5(Gd,Y) phase is observed at the peak hardness of aged alloys. The significant improvement of the tensile strength at peak hardness is mainly attributed to the fine dispersion of the β-Mg5(Gd,Y) precipitate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号