共查询到19条相似文献,搜索用时 80 毫秒
1.
针对基于双线性混合模型(BMM)的高光谱图像梯度 解混算法的局限性,提出一种基于神经网络(NN)和差分搜索算法(DSA)的非线性 高光谱图像解混算法。在考虑p阶多项式模型的基础上,利用N N估计出实际高光谱图像的非线性阶数。构造解混 的目标函数,将非线性解混问题转化为最优化问题。引入DSA对目标函数进 行优化,将解混过程中的待求参数 映射为差分搜索过程中的位置参数,同时在搜索过程中引入丰度非负和全加性约束映射机制 满足解混要求。仿真数据和 实际高光谱数据实验结果表明,本文算法有效地克服了基于BMM的梯度解 混算法的不足,可有效实现高光谱 图像的非线性解混。当NN采用2000个样本训 练,解混真实高光谱数 据得到相应的重构误差(RE)达到1.15×10-2 ,具有良好解混效果。 相似文献
2.
非线性解混可以解释高光谱图像复杂场景中的非线性混合效应,但地物的光谱变异性是其中的一个难点。提出一种考虑光谱变异性的无监督非线性解混算法。通过核函数将原始高光谱图像数据隐式地映射到高维特征空间中,从而在该空间中结合光谱变异性进行线性解混;与此同时,依据实际地物的分布特性,添加丰度和光谱变异系数的局部平滑约束。模拟和真实高光谱数据的实验结果表明,该方法能克服不同非线性混合场景中存在的光谱变异性问题,提高光谱解混的精度。 相似文献
3.
4.
高光谱遥感图像的非线性光谱解混能弥补线性方法难以解释复杂场景中非线性混合效应的不足, 而双线性混合模型及算法是其研究的热点.提出了一种基于双线性混合模型几何特性的光谱解混算法.通过将模型中的非线性混合项表示为一个融合了共同非线性效应的额外端点的线性贡献, 使复杂的双线性混合模型求解转化为简单的线性解混问题.然后结合传统的线性解混算法直接迭代估计正确的丰度.模拟和真实遥感图像数据的实验结果表明, 与其它相关解混方法相比, 该算法能较好地克服共线性效应以及拟合优化过多参数对双线性混合模型求解造成的不利影响, 同时提高了解混的精度和速度. 相似文献
5.
在高阶非线性混合模型的基础上,提出一种多目标高光谱图像解混算法,解决传统方法受高光谱数据异常值影响而解混精度不高的问题。该算法以重构误差与光谱角分布为目标函数建立优化模型,并同时优化两目标函数以减少数据异常值对模型求解的影响,使解混结果在两个评价指标上得到提升;最后采用差分搜索算法求解多目标优化模型,解决梯度类优化方法易陷入局部极值的问题,从而进一步提升解混精度。实验结果表明,文中算法与传统高光谱解混算法相比,具有更精确的端元丰度估计结果和更高的解混精度。 相似文献
6.
高光谱遥感图像非线性解混研究综述 总被引:1,自引:1,他引:1
介绍了近年来非线性光谱解混方法的发展状况,主要包括矿物沙地地区的紧密混合模型和植被覆盖区域的多层次混合模型,以及基于这些模型的非线性解混算法和利用核函数、流形学习等方法的数据驱动非线性光谱解混算法及非线性探测算法.最后分析总结了现有非线性解混模型与算法的优势与缺陷及未来的研究趋势. 相似文献
7.
高光谱解混是学术界的一个难题,稀疏高光谱解混指的是利用已知光谱库进行解混,旨在从先验光谱库中找到一些可以表征图像的数个纯光谱向量作为高光谱图像的端元,并利用这些端元求解相应的端元丰度,这是一个NP难的组合优化问题。目前多通过将L0范数凸松弛为L1范数进行稀疏解混,但该方法得到的仅仅是近似解。文中提出了一种基于Pareto优化的稀疏解混算法(ParetoSU),将稀疏解混问题转化为一个两目标优化问题,其中一个优化目标是建模误差,另一个目标是端元稀疏度。ParetoSU直接解决稀疏解混中的组合优化问题,不需要对L0范数进行近似。最后利用仿真数据验证了该解混算法的有效性。 相似文献
8.
为了进一步提升高光谱图像的解混精度,提出一种基于回溯优化的高光谱图像后非线性解混算法。在后非线性混合模型的基础上,以观测图像与重构图像之间的重构误差为目标函数,使用回溯搜索算法在解空间搜索使目标函数取得极小值的最优解。在搜索过程中,利用回溯搜索算法的边界控制机制有效保证了高光谱图像解混过程中的约束条件,进而有效实现了对解混丰度值和非线性参数的精确估计。针对合成高光谱图像和真实高光谱遥感图像的解混实验表明,文中算法具有优异的解混性能,所达到的解混精度显著优于现有非线性高光谱图像解混算法。 相似文献
9.
10.
约束最小二乘的高光谱图像非线性解混 总被引:2,自引:0,他引:2
高光谱图像解混是高光谱数据分析的重要研究内容.在现有混合模型的基础上,提出一种新的高光谱图像非线性解混算法.通过在目标函数中引入丰度的非负及和为一约束以及非线性参数的有界约束,该算法将高光谱图像非线性解混问题转化为求解丰度矢量和非线性参数的约束非线性最小二乘问题,继而采用一种交替迭代优化算法求解该问题.仿真和实际高光谱数据的实验结果表明,所提出的算法有效地克服了线性解混的不足,同时具有良好的抗噪声性能,可以作为一种解决高光谱遥感图像非线性解混的有效手段. 相似文献
11.
高光谱遥感图像识别技术在伪装目标识别方面具有很大的应用前景。针对高光谱遥感图像中的混合像元和光谱变异问题,提出基于高光谱解混技术的伪装目标识别方法。该方法采用扩展线性混合模型表征高光谱图像中的光谱变异问题,利用超像元分割技术将原始高光谱图像转换为粗细多尺度特征图,对超像元丰度矩阵附加8-邻域空间加权与行约束,以降低噪声和奇异点像元的影响。针对伪装目标空间分布稀疏的特点,在模型中增加丰度矩阵的截断加权核范数作为正则化项,以提高算法精度。实验结果表明提出的方法具有良好的抗噪性和较高的解混精度,可以有效提高伪装目标识别精度。 相似文献
12.
针对高光谱图像中普遍存在的混合像元中各端元空间分布定位困难的问题,文中提出一种基于K-SVD的光谱解混算法,利用其解混结果进行亚像元定位。算法首先通过KNN分类来区分待处理图像中的混合像元和纯像元,然后借鉴基于冗余字典的稀疏分解相关理论,以标准光谱库为基础,通过基于K-SVD的字典训练算法训练产生最具代表性的地物光谱曲线,构建端元冗余字典,通过基于K-SVD的稀疏分解算法实现各端元丰度的求解。最后利用求得的丰度系数在两种空间性相关性约束下进行亚像元定位。实验结果表明,采用该算法进行模拟数据和真实数据的亚像元的定位可以取得不错的定位结果。 相似文献
13.
14.
基于双向预测的高光谱图像无损压缩 总被引:1,自引:1,他引:1
提出了一种基于双向预测的高光谱图像无损压缩算法。该算法首先采用自适应波段选择算法选出信息量较大的波段,然后利用聚类算法对这些波段的谱向矢量进行分类预处理。为了便于组织谱间预测过程,根据相邻波段相关性大小进行自适应波段分组,采用双向预测的方法去除谱间相关性。通过在参考波段和预测波段中定义三维上下文预测结构,在聚类结果的基础上,对各个像素分别训练最优的预测系数,从而实现当前波段的有效预测。对AVIRIS型高光谱图像的实验结果表明,该方法可获得较好的无损压缩性能。 相似文献
15.
针对传统稀疏解混方法对丰度的稀疏性表征不充分及空间信息利用率低等问题,本文在分析迭代加权稀疏解混方法的基础上,提出了一种基于光谱加权协同稀疏和全变差正则化的高光谱解混方法.该方法一方面在协同稀疏解混的基础上引入光谱加权因子进一步刻画丰度系数的行稀疏性,以促进所有像元之间的联合稀疏性;另一方面引入各向异性全变差空间正则化促进图像同质区域的平滑性,以提高解混的准确性.通过交替方向乘子法求解该模型,通过迭代,利用内外部双循环迭代方法对光谱加权因子和丰度系数进行优化.模拟和真实的高光谱数据实验结果均表明本文提出的算法与现有同类算法相比能大幅提高混合像元分解的精度,在稀疏解混方面展现出了巨大的潜力. 相似文献
16.
提出了一种利用相关向量机后验概率进行高光谱影像混合像元分解的方法.基于支持向量机后验概率输出的高光谱影像混合像元分解方法中,类别后验概率需要通过带参数的S形函数近似,而且模型需要通过交叉验证获取较好的规则化系数.相关向量机是在贝叶斯框架下提出的更加稀疏的学习机器,它没有规则化系数,核函数不需要满足Mercer条件.本文从分析支持向量机用于高光谱影像混合像元分解存在的不足出发,介绍了稀疏贝叶斯分类模型和模型参数推断,采用了快速序列稀疏贝叶斯学习算法.通过PHI影像的混合像元分解实验分析,表明了基于相关向量机的高光谱影像混合像元分解方法的优势. 相似文献
17.
18.
文中提出一种遗传-细菌觅食组合优化算法以解决非线性模型优化问题。该方法先使用遗传算法进行全局搜索,并缩小最优解的搜索范围;再使用细菌觅食优化算法在该局部范围内执行局部搜索。这种组合搜索策略可以增强算法的收敛性,并能有效地均衡全局搜索和局部搜索。文中利用单峰、多峰和复杂多峰等非线性函数模型验证所提算法的性能。实验结果表明,组合算法的计算精度和效率分别比遗传算法和细菌觅食优化算法提高了30%和50%,表明该组合算法具有更快的收敛速度,更高的求解精度,适用于大规模多极值的非线性问题。 相似文献
19.
传统非负矩阵分解方法仅基于单层线性模型,现有的深度非负矩阵分解模型忽略了地物光谱的实际混合物理过程,仅从数学理论考虑深度分解。对此,文中从光谱混合的物理过程出发,综合非负矩阵分解和深度学习,将光谱混合过程进行反向建模,并充分考虑丰度的稀疏性和空间平滑性,构建了用于高光谱遥感影像解混的面向端元矩阵的全变差稀疏约束深度非负矩阵分解模型。通过模拟实验和真实实验,将文中所提方法与5种解混方法进行对比。结果表明,相较于面向丰度的深度非负矩阵分解算法,文中所提方法的平均光谱角距离和均方根误差均有所降低,取得了最佳解混结果。 相似文献