首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Isotype switching to IgE requires two signals. The first signal is provided by the cytokines IL-4 or IL-13, and the second signal is delivered by the interaction between the B cell antigen CD40 and its ligand (CD40L) which is expressed on activated T cells. Since superantigens have been shown to activate T cells, we examined the effect of the superantigen toxic shock syndrome toxin-1 (TSST-1) on CD40L expression on T cells. TSST-1 induced expression of CD40L in both freshly isolated T cells and in T cell lines expanded by re-stimulation with TSST-1. CD40L was preferentially expressed in the V beta 2 subset of T cells expanded by TSST-1. We next examined the effect of TSST-1 on IgE synthesis by human peripheral blood mononuclear cells (PBMC). Addition of TSST-1 to PBMC inhibited IL-4-induced IgE synthesis in a dose-dependent manner. This inhibition was reversed partly by adding a neutralizing antibody to IFN-gamma. In contrast, TSST-1 induced high amounts of IgE synthesis in the presence of IL-4 at low T:B cell ratios (0.5:10 to 4:10), a condition which circumvents the inhibitory effect of IFN-gamma. TSST-1 induction of IgE synthesis was inhibited by a mAb to CD40L. These results indicate that superantigens induce CD40L expression in T cells and cause isotype switching in B cells which is mediated by CD40L-CD40 interaction.  相似文献   

2.
CD40 ligand (CD40L)/CD40 costimulation is an important regulator of Th1 responses. Two mechanisms by which CD40L/CD40 stimulation may enhance IFN-gamma are via direct induction of IL-12 and augmentation of the expression of costimulatory molecules such as B7 from APCs. We examined the ability of CD40L/CD40 stimulation to regulate the production of IFN-gamma through IL-12 and/or CD28 costimulation from human PBMCs stimulated with T cell-specific stimuli. The roles of exogenous and endogenous CD40L/CD40 stimulation were evaluated using a trimeric soluble CD40L agonist (CD40T) and an anti-CD40L Ab, respectively. The presence of CD40T in cultures increased the production of IL-12 and IFN-gamma from PBMCs stimulated with varying amounts of PHA. The mechanism, however, by which CD40T enhanced IFN-gamma varied according to the level of T cell activation. Under maximal stimulatory conditions (PHA, 1/100), an IL-12-dependent pathway was dominant. At relatively low levels of T cell stimulation (PHA, 1/500 and 1/1000), however, an additional IL-12-independent CD28-dependent pathway was elucidated. We further studied the role of exogenous CD28 stimulation in regulating the production of IFN-gamma. The enhancement of IFN-gamma production induced by direct CD28 stimulation was primarily dependent on endogenous IL-12 or CD40L/CD40 stimulation. Together, these data suggest that the production of IFN-gamma involves a complex interaction between two interdependent, yet distinct, costimulatory pathways and provide evidence that CD40T may be an effective adjuvant for the enhancement of responses.  相似文献   

3.
At inflammatory sites, the number of activated bystander T cells exceeds that of Ag-activated T cells. We investigated whether IL-15, a monocyte-derived cytokine that shares several biologic activities with IL-2, may contribute to bystander T cell activation in the absence of IL-2 and triggering Ag. The addition of IL-15 to cocultures of monocytes and T cells stimulates CD4+ but not CD8+ T cells to produce IFN-gamma. IFN-gamma production requires endogenous IL-12, the production of which in turn is dependent upon CD40/CD154 interactions between CD4+ T cells and monocytes. Indeed, non-TCR-activated CD4+ but not CD8+ T cells express significant levels of CD154. IL-15 may enhance IFN-gamma in this system by up-regulating CD40 expression on monocytes and IL-12Rbeta1 expression on CD4+ T cells. Conversely, using neutralizing anti-IL-15 mAb, we show that the ability of IL-12 to augment IFN-gamma secretion is partly mediated by endogenous IL-15. Finally, in the absence of monocytes, a synergistic effect between exogenous IL-12 and IL-15 is necessary to induce IFN-gamma production by purified CD4+ T cells, while IL-15 alone induces T cell proliferation. It is proposed that this codependence between IL-12 and IL-15 for the activation of inflammatory T cells may be involved in chronic inflammatory disorders that are dominated by a Th1 response. In such a response, a self-perpetuating cycle of inflammation is set forth, because IL-15-stimulated CD4+ T cells may activate monocytes to release IL-12 that synergizes with IL-15 to induce IL-12 response and IFN-gamma production.  相似文献   

4.
Interaction between CD40 and the CD40 ligand (CD40L) is required for mouse mammary tumor virus (MMTV) propagation. We found that Fas was expressed on B cells and CD40L on a small subset of viral superantigen-cognate T cells 12 h after MMTV(SW) infection. CD40L and Fas were down-regulated after 24 h. All CD4 T cells then became resistant to anti-CD3-induced CD40L induction in vitro for 2 wk. Initiation of CD40L expression and its rapid shut-off was associated with IL-12 production and was controlled by IFN-gamma and shedding of soluble CD40. These results suggest that a rapid, transient CD40-CD40L interaction involving a small number of cells is sufficient for MMTV propagation. Modulation of CD40L expression may be a major mechanism regulating the balance between viral propagation and host defenses, allowing mutual survival.  相似文献   

5.
Although there is good evidence that the induction of IL-4 synthesis in CD4+ T lymphocytes is favored by Ag presentation by B cells and not macrophages, the precise molecular signals provided by B cells to T cells that enhance IL-4 synthesis are not clear. To examine this issue, we established an APC-independent system to activate highly purified T cells and induce cytokine synthesis, using immobilized mAbs against several T cell surface molecules, including CD3, CD28, and the CD40 ligand (CD40L). The counter-receptors for all three of these molecules are expressed on B cells, and include CD40, which is expressed primarily on B cells, but also on dendritic cells and thymic epithelium. We found that IL-4 synthesis was greatly enhanced by triggering of CD40L on the T cell surface in conjunction with ligation of CD3/TCR and CD28, whereas ligation of CD3/TCR and CD28 in the absence of CD40L triggering resulted in little or no IL-4 synthesis. CD40L costimulation greatly enhanced IL-4 synthesis both in T cells from normal nonallergic adult subjects as well as in naive T cells from cord blood. Furthermore, we demonstrated that IL-4 synthesis was optimally enhanced when the strength of the CD3/TCR signal was limiting, while IL-4 synthesis was inhibited when CD3/TCR stimulation was maximal. These studies confirm that IL-4 synthesis can be induced in normal T lymphocytes in the absence of exogenous IL-4, and demonstrate that CD40L costimulation is of fundamental importance in regulation of IL-4 production. In addition, these findings provide a mechanism by which B cells preferentially enhance IL-4 synthesis in T cells at low Ag concentrations.  相似文献   

6.
OBJECTIVE: To investigate the immunosuppressive mechanism of Tripterygium wilfordii Hook-F (TWHf) in human T cells. TWHf, a traditional Chinese medicinal herb for rheumatoid arthritis, has been shown to inhibit the function of immune effector cells such as neutrophils, macrophages, and B lymphocytes. METHODS: T cell survival was evaluated with trypan blue exclusion assay, morphologic changes with Wright's stain, the induction of endonuclease activity with DNA fragmentation assay, and the subdiploid DNA content with flow cytometry. T cell activation was measured with interleukin 2 (IL-2) ELISA and the expression of several surface molecules with flow cytometry. RESULTS: At high dosages, TWHf caused inhibition of T cell proliferation and this mechanism was mediated through the induction of apoptosis. TWHf, in noncytotoxic dosages, was as potent as cyclosporin A and more potent than prednisolone and cyclophosphamide in inhibiting IL-2 production from activated T cells. TWHf also inhibited both phorbol 12-myristate 13-acetate induced IL-2Ralpha expression and ionomycin induced CD40 ligand expression. TWHf did not reverse downregulated expression of CD3 and CD4 by phorbol ester stimulation. CONCLUSION: This is the first evidence that the immunosuppressive mechanism of TWHf in T cells was mediated through both downregulation of T cell receptor signaling pathway and induction of cellular apoptosis, which is defective in autoimmune diseases.  相似文献   

7.
We demonstrated that two distinct pathways exist for the induction of IL-12 in APC. The first pathway for IL-12 production occurred during responses to T cell-dependent Ags such as OVA and required triggering of CD40 molecules on the APC. IL-12 production in this T cell-dependent system increased in direct proportion to Ag concentration and required TCR ligation but not CD28 costimulation. The second pathway occurred when bacterial products such as LPS or heat-killed Listeria monocytogenes were used to activate macrophages to produce IL-12 in the complete absence of T cells. In this second pathway, IL-12 production was completely independent of CD40 triggering. In both pathways, the presence of IFN-gamma was not required for induction of IL-12 synthesis when splenic adherent cells (SAC) from normal mice were used. However, addition of IFN-gamma to cultures of Th2 T cells and SAC increased IL-12 production two- to fivefold, and addition of rTNF-alpha with IFN-gamma further enhanced IL-12 production. The addition of TNF-alpha in the absence of IFN-gamma, however, had no effect on IL-12 production in the T cell-dependent pathway. Similarly, addition of TNF-alpha in the presence or the absence of IFN-gamma to cultures of LPS or heat-killed Listeria and SAC did not increase IL-12 production, but addition of IFN-gamma alone greatly enhanced IL-12 production, consistent with the idea that bacterial stimuli induce significant quantities of endogenous TNF-alpha production. These results indicate that the requirements for the induction of IL-12 production in T cell-dependent and T cell-independent responses differs mainly with regard to CD40 triggering. Furthermore, these results suggest that IL-12 production can be induced by bacterial products in patients with hyper-IgM syndrome who lack CD40 ligand expression and in those treated with soluble gp39 to interrupt CD40-CD40 ligand interactions.  相似文献   

8.
To futher our understanding of the mechanisms underlying the diverse effects of altered peptide ligands (APL) on T cell activation, we used a population of nonactivated spleen cells from mice that expressed a transgenic TCR specific for myelin basic protein Ac1-11 and peptide analogues that display either enhanced or decreased affinities for TCR/MHC to address the question whether APL-induced signaling through the TCR can regulate the capability of APC to activate T cells. We demonstrate that weak agonists APL are poor inducers of all aspects of the activation of both the responder T cells and the APC. Enhancement of the antigenic signal by augmenting the binding of the weak agonists to MHC reversed their defective activating capacity. Enhancement of costimulation by engagement of CD28 only resulted in augmentation of the capacity of the weak agonist APL to induce proliferation and IL-2/IL-3 production, but not CD40L or IL-12Rbeta2 chain expression on T cells, CD80/CD86 expression on APC, IL-12 secretion, or IFN-gamma production. Exogenous IL-12 promoted IFN-gamma production in the presence of the weak agonists. These studies demonstrate that there is a critical threshold of antigenic signal required for full activation of the T cell-APC interactions needed for the differentiation of Th1 cells. The provision of excess costimulation can overcome some of the defects in T cell activation by weak agonists, but is insufficient to induce a sufficient level of CD40L expression needed for engagement of CD40 on APC with subsequent IL-12 production and induction of IL-12Rbeta2 chain expression.  相似文献   

9.
The expression of CD23 on PHA-activated human PBT (peripheral blood T) cells of healthy donors was investigated. It appears that CD23 is expressed solely on activated CD4+ T cells. Cytofluorotometric analysis revealed that 6% of PHA-activated CD4+ T cells expressed CD23, while unstimulated CD4+ T cells express no detectable CD23. The addition of IL-7 (1000 U/ml) to activated CD4+ T cells resulted in a marked augmentation of CD23 expression (29%). CD23 expression was blocked by M20 and M26 mAbs, but no reduction was detected by anti-IL-2R (CD25) mAb. This suggests that IL-7 has a specific regulatory effect on CD23 expression independent of IL-2. Northern Blot analysis showed a marked increase of CD23 mRNA detected in PHA-activated CD4+ T cells plus IL-7. IL-7 was also able to upregulate the expression of HLA-DR on activated CD4+ T cells. Optimal HLA-DR and CD23 induction by IL-7 occurred at 48 and 72 h of culture. The addition of CHX revealed that the induction of CD23 and HLA-DR by IL-7 required intact protein synthesis. Furthermore, PHA activated CD4+ T cells cultured in the presence of IL-7 are polarized to a Th-2 pattern of cytokine production.  相似文献   

10.
Costimulation was originally defined and characterized during primary T cell activation. The signaling events that regulate subsequent antigen encounters by T cells are less well defined. In this study we examined the role of CD30 in T cell activation and defined factors that regulate expression of CD30 on T cells. We demonstrate that CD30 expression is restricted to activated T cells and regulated by CD28 signal transduction. In contrast to CD28-expressing TCR Tg cells, CD28-deficient TCR Tg cells did not express CD30 when cultured with peptide and APCs. However, rIL-4 reconstituted CD30 expression on CD28-deficient TCR Tg cells. Blockade of CD28 interactions or depletion of IL-4 inhibited the induction of CD30, suggesting that both CD28 and IL-4 play important roles in the induction of CD30 expression on wild-type cells. However, CD28 signaling did not up-regulate CD30 expression solely through its ability to augment IL-4 production because IL-4-deficient T cells stimulated with anti-CD3 and anti-CD28 expressed CD30. Induction of CD30 in the absence of IL-4 was not due to the IL-4-related cytokine IL-13. CD30, when expressed on an activated T cell, can act as a signal transducing receptor that enhances the proliferation of T cells responding to CD3 crosslinking. Collectively, the data suggest that T cell expression of CD30 is dependent on the presence of CD28 costimulatory signals or exogenous IL-4 during primary T cell activation. Once expressed on the cell surface, CD30 can serve as a positive regulator of mature T cell function.  相似文献   

11.
The role of CD40 in the development of germinal centers (GC) is not simply to initiate the B cell response, as rudimentary GC can develop in CD40-/- mice that are injected with CD40-immunoglobulin (Ig) fusion protein. This indicates that CD40 ligand (CD40L) transduces a signal to T cells that is important in the process. In this study we have used an in vitro model of GC development to investigate the role of CD40L, cytokines and other co-stimuli. The model involves the specific induction of an H-2E transgene in GC B cells (in Sma58 mice). We find that Th2 cytokines together with Ig and CD40 cross-linking are the most efficient means of induction of the GC phenotype. Although IL-4 plays some inductive role, it is not the sole active ingredient in the mix of cytokines made by Th2 cells. Our studies on primary T cells and T cell clones activated in the absence of CD40 on antigen-presenting cells or CD40L on T cells indicate that the CD40L co-stimulus does not directly bias the response to Th2 cells, as previously reported, but that it augments terminal effector T cell differentiation or the level of secretory activity. However, both in vitro and in vivo, the CD40L co-stimulus is crucially important for Th2 development as in its absence IL-4 production is suboptimal and does not compete with a larger, more rapid IFN-gamma response.  相似文献   

12.
Interactions between CD40 on antigen-presenting cells and its ligand (CD40L) on T cells has been implicated in T cell-mediated immune responses. Previously, we have shown that contact hypersensitivity (CHS), a cell-mediated cutaneous immune response in reaction to haptens, could be subclassified based on whether the hapten primed for Th1 or Th2 cytokines in cells isolated from draining lymph nodes. We also found that tolerance to a Th2-priming hapten could be induced only by simultane blockade of the CD40-CD40L and B7-CD28 at the time of sensitization. Here we demonstrate that blockade of CD40-CD40L signaling alone induces long-lasting unresponsiveness to the Th1 hapten 2,4-dinitrofluorobenzene (DNFB), and inhibits antigen-specific T cell proliferation in vitro. We find that CD40-CD40L signaling is required in the sensitization but not elicitation phase of DNFB-induced CHS, as treatment of mice with anti-CD40L monoclonal antibody (mAb) does not affect the response to hapten challenge in previously sensitized and untreated animals. Examination of cytokine production shows that anti-CD40L mAb decreases interferon-gamma production by draining lymph node cells from DNFB-sensitized mice, and reciprocally increases interleukin (IL)-4 production. Consistent with this Th1 to Th2 immune deviation, anti-CD40L mAb prevents the induction of IL-12 mRNA in regional lymph nodes, an event which is normally seen within 12 h following hapten sensitization. In contrast, suppression of CHS by CTLA4Ig decreased the production of all cytokines by draining lymph node cells. Together, these data show that blockade of the CD40-CD40L pathway by itself is sufficient to induce tolerance to DNFB-induced CHS, and that this is associated with blockade of IL-12 induction and Th1 to Th2 immune deviation.  相似文献   

13.
Dendritic cells are the most relevant antigen-presenting cells (APC) for presentation of antigens administered in adjuvant to CD4+ T cells. Upon interaction with antigen-specific T cells, dendritic cells (DC) expressing appropriate peptide-MHC class II complexes secrete IL-12, a cytokine that drives Th1 cell development. To analyze the T cell-mediated regulation of IL-12 secretion by DC, we have examined their capacity to secrete IL-12 in response to stimulation by antigen-specific Th1 and Th2 DO11.10 TCR-transgenic cells. These cells do not differ either in TCR clonotype or CD40 ligand (CD40L) expression. Interaction with antigen-specific Th1, but not Th2 cells, induces IL-12 p40 and p75 secretion by DC. The induction of IL-12 production by Th1 cells does not depend on their IFN-gamma secretion, but requires direct cell-cell contact mediated by peptide/MHC class II-TCR and CD40-CD40L interactions. Th2 cells not only fail to induce IL-12 secretion, but they inhibit its induction by Th1 cells. Unlike stimulation by Th1, inhibition of IL-12 production by Th2 cells is mediated by soluble molecules, as demonstrated by transwell cultures. Among Th2-derived cytokines, IL-10, but not IL-4 inhibit Th1-driven IL-12 secretion. IL-10 produced by Th2 cells appears to be solely responsible for the inhibition of Th1 -induced IL-12 secretion, but it does not account for the failure of Th2 cells to induce IL-12 production by DC. Collectively, these results demonstrate that Th1 cells up-regulate IL-12 production by DC via IFN-gamma-independent cognate interaction, whereas this is inhibited by Th2-derived IL-10. The inhibition of Th1 -induced IL-12 production by Th2 cells with the same antigen specificity represents a novel mechanism driving the polarization of CD4+ T cell responses.  相似文献   

14.
To investigate the consequences of CD40 engagement on the neonatal induction of transplantation tolerance, BALB/c mice were injected at birth with (A/J x BALB/c) F1 spleen cells together with activating anti-CD40 mAb and grafted 4 wk later with A/J skin. Whereas A/J allografts were accepted in mice neonatally injected with F1 cells and control Ab, they were acutely rejected in mice injected with F1 cells and anti-CD40 mAb. Neonatal administration of anti-CD40 mAb resulted in enhanced anti-A/J CTL activity, increased IFN-gamma, and decreased IL-4 production by donor-specific T cells in vitro. Experiments using anti-cytokine mAb and IFN-gamma-deficient mice demonstrated that CD40 ligation prevents neonatal allotolerance through an IFN-gamma- and IL-12-dependent pathway. Finally, we found that newborn T cells express less CD40L than adult T cells upon TCR engagement. Taken together these data indicate that insufficiency of CD40/CD40L interactions contribute to neonatal transplantation tolerance.  相似文献   

15.
Previous studies on human Th subset development were restricted to the analysis of naive T cells activated with anti-CD3 mAb in the absence of physiologic APC. In this study, we have analyzed the role of cytokines and physiologic APC on T cell maturation in an Ag-specific system, in which naive neonatal CD4 T cells were primed with allogeneic dendritic cells (DC). We found that the cytokine profile of primed cells was dependent upon 1) the ratio between T cells and allogeneic DC and 2) the endogenous production of IL-4 and IL-12. Neutralization of IL-4 during primary MLR increased IFN-gamma production at priming and shifted the phenotype of primed cells from Th0 to Th1. These effects were IL-12 dependent, in that they were suppressed by anti-IL-12 Abs. The production of IL-12 in primary MLR was further evidenced by the presence of IL-12 p40 in the culture supernatant fluids. IL-12 production was suppressed by exogenous IL-4 and increased by anti-IL-4 blocking mAbs, indicating that endogenous IL-4 down-regulated IL-12 production by DC. Finally, IL-12 was produced as a result of T cell/DC interaction involving the CD40/CD40 ligand and CD28/B7 costimulation pathways, as revealed by the inhibitory effect of anti-CD40 ligand mAb and CTLA-4Ig. These observations suggest that in neutral conditions, Ag presentation by DC results in the coordinate production of naive T cell-derived IL-4 and DC-derived IL-12 that in concert shape the cytokine profile of Th cells.  相似文献   

16.
IL-12 is a key cytokine in the development of Th1 responses. IL-12 production by antigen-presenting cells (APC) can be induced by the interaction between CD40 on the APC and CD40 ligand (CD40L) expressed on T cells after activation. Our previous study indicated that in dendritic cells (DC), the only APC that can activate naive T(h) cells efficiently, the mere CD40 engagement is insufficient to induce IL-12 production. The aim of the present study was to dissect the conditions for efficient IL-12 production by DC further. Using populations of naive and memory Th cells, recombinant CD40L, neutralizing and blocking antibodies, and by determining IFN-gamma production and CD40L expression levels, we here show that T cell-induced IL-12 production by DC results from the action of two signals, mediated by CD40L and IFN-gamma, and that the inability of naive T(h) cells to induce IL-12 production resides in their inability to produce IFN-(gamma). Other factors than CD40L and IFN-gamma can provide the required signals for IL-12 production by DC, as either factor could be replaced by lipopolysaccharide (LPS). The two-signal requirement proved unique for the production of IL-12, since either CD40 engagement or LPS was sufficient for the efficient production of tumor necrosis factor-alpha, IL-8 and the p40 subunit of IL-12, and may be considered as a safety mechanism for optimal control of potentially harmful T(h)1 responses.  相似文献   

17.
The differentiation of CD4+ T cells into a Th1 vs Th2 phenotype profoundly influences the outcome of autoimmune and infectious diseases. B7 costimulation has been shown to affect the production of both Th1 and Th2 cytokines, depending on the system studied. There is, consequently, great interest in manipulating the B7 costimulatory signal for therapeutic purposes. To optimally manipulate this key immunoregulatory pathway, the contribution of B7 costimulation to cytokine production requires further clarification. We have compared the B7 requirement for cytokine production by naive vs previously activated T cells using DO11.10 TCR transgenic CD4+ T cells and splenic APCs from mice lacking B7 expression. Our data indicate that induction of IL-4 production and Th2 differentiation by naive T cells is highly dependent on B7 molecules, whereas IL-4 production by previously activated T cells is B7 independent. The predominant contribution of B7-mediated signals to Th1 cytokine production by both naive and primed T cells is upon IL-2 production (and expansion) rather than IFN-gamma (effector cytokine) production. Thus, our studies demonstrate that the antigenic experience of a T cell at the time of B7 blockade may determine whether blockade predominantly affects T cell expansion, differentiation, or effector cytokine production. These differential effects of B7 costimulation on IL-2 vs IFN-gamma production and on IL-4 production by naive vs primed T cells have important implications for understanding how B7:CD28/CTLA4 blockade can be effectively used to manipulate cytokine production in vivo.  相似文献   

18.
IL-12 and IL-18 have the capacity to stimulate IFN-gamma production by T cells. Using a T cell clone, we reported that IL-18 responsiveness is generated only after exposure to IL-12. Here, we investigated the induction of IL-18 responsiveness in resting CD8+, CD4+, and CD4-CD8- T cells. Resting T cells respond to neither IL-12 nor IL-18. After stimulation with anti-CD3 plus anti-CD28 mAbs, CD8+, CD4+, and CD4-CD8- T cells expressed IL-12R, but not IL-18R, and produced IFN-gamma in response to IL-12. Cultures of T cells with anti-CD3/anti-CD28 in the presence of rIL-12 induced IL-18R expression and IL-18-stimulated IFN-gamma production, which reached higher levels than that induced by IL-12 stimulation. However, there was a substantial difference in the expression of IL-18R and IL-18-stimulated IFN-gamma production among T cell subsets. CD4+ cells expressed marginal levels of IL-18R and produced small amounts of IFN-gamma, whereas CD8+ cells expressed higher levels of IL-18R and produced more IFN-gamma than CD4+ cells. Moreover, CD4-CD8- cells expressed levels of IL-18R comparable to those for CD8+ cells but produced IFN-gamma one order higher than did CD8+ cells. These results indicate that the induction of IL-18R and IL-18 responsiveness by IL-12 represents a mechanism underlying enhanced IFN-gamma production by resting T cells, but the operation of this mechanism differs depending on the T cell subset stimulated.  相似文献   

19.
CD40/CD40 ligand interactions are required for the development of T cell-dependent Ab responses in vivo. The role of these cell surface molecules in contributing to T cell cytokine production and the development of effector populations other than B cells and T cells is, however, less well defined. We have examined the in vivo effects of blocking CD40/CD40 ligand interactions on the type 2 mucosal immune response that follows oral inoculation of mice with the nematode parasite, Heligmosomoides polygyrus. Administration of anti-gp39 (CD40L) mAb (MR1) blocked H. polygyrus-induced elevations in serum IgG1 levels and inhibited elevations in blood eosinophils and mucosal mast cells at day 14 after inoculation. Anti-gp39 mAb markedly inhibited B cell blastogenesis 8 days after H. polygyrus inoculation but did not inhibit elevations in B cell class II MHC expression. Maximal elevations in B7-2 expression required signaling through both CD40 and the IL-4R. Elevations in T cell cytokine gene expression and elevations in the number of IL-4-secreting cells were unaffected by treatment with anti-gp39 mAb, although IL-4 production was inhibited by anti-IL-4R mAb. These results suggest that CD40/CD40L interactions are not required to activate T cells to produce cytokines but are required for the activation and proliferation of other effector cells associated with the type 2 response.  相似文献   

20.
Interferon gamma (IFN-gamma) has been implicated in T helper type 1 (Th1) cell development through its ability to optimize interleukin 12 (IL-12) production from macrophages and IL-12 receptor expression on activated T cells. Various systems have suggested a role for IFN-gamma derived from the innate immune system, particularly natural killer (NK) cells, in mediating Th1 differentiation in vivo. We tested this requirement by reconstituting T cell and IFN-gamma doubly deficient mice with wild-type CD4(+) T cells and challenging the mice with pathogens that elicited either minimal or robust IL-12 in vivo (Leishmania major or Listeria monocytogenes, respectively). Th1 cells developed under both conditions, and this was unaffected by the presence or absence of IFN-gamma in non-T cells. Reconstitution with IFN-gamma-deficient CD4(+) T cells could not reestablish control over L. major, even in the presence of IFN-gamma from the NK compartment. These data demonstrate that activated T cells can maintain responsiveness to IL-12 through elaboration of endogenous IFN-gamma without requirement for an exogenous source of this cytokine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号