首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
在AZ31B镁合金表面制备不同Al含量的Al-Mg_2Si复合涂层。用XRD、SEM、EDS分析涂层的物相组成、组织及元素成分;通过电化学试验和浸泡试验测试试样的耐腐蚀性,并测试涂层的显微硬度,研究Al含量对涂层组织及耐腐蚀性能的影响。结果表明,Al含量越高,涂层组织越致密,孔洞和裂纹越少。Al含量为60%时涂层的耐腐蚀性最佳,显微硬度最高,腐蚀电位为-1.363 5V,腐蚀电流密度为0.457 8mA/cm~2,显微硬度(HV)为300左右。  相似文献   

2.
范春  龙威  周小平 《表面技术》2018,47(2):225-230
目的在AZ31B镁合金表面火焰喷涂制备Al-Mg_2Si复合涂层,研究其耐腐蚀和耐磨性能。方法用SEM、电化学测试仪、高速往复摩擦磨损测试仪和超景深三维显微镜检测分析不同成分配比的Al-Mg_2Si复合涂层的耐腐蚀和摩擦磨损性能。结果 Al-Mg_2Si复合涂层的电位较AZ31B镁合金基体正,且Al含量越少,电位正移越明显。Al(20%)-Mg_2Si复合涂层的自腐蚀电位正移得最多,正移了0.5288 V;自腐蚀电流密度最小,为3.298×10-6 A/cm2。Al加入量越少,复合涂层的磨损率和摩擦系数越小,当Al质量分数为20%时,两者均达到最小值,分别为2.48×10-4 mm3/(N·mm)和0.25。结论 Al含量越少,Al-Mg_2Si复合涂层的耐蚀和耐磨性能越好。  相似文献   

3.
王丹  周小平 《表面技术》2016,45(9):51-55
目的提高AZ31B镁合金的耐蚀性。方法采用氧乙炔在AZ31B镁合金表面喷熔Al涂层,对喷熔的Al涂层进行扫描电镜(SEM)分析,采用能谱仪(EDS)对涂层进行面扫描检测涂层元素的分布情况。利用电化学分析法、浸泡试验检测喷熔涂层的耐蚀性,用维氏硬度计测试喷熔涂层的硬度。结果喷熔的Al涂层与AZ31B镁合金基体结合良好,呈现冶金结合。喷涂过程中,喷熔的Al涂层呈等轴晶生长。通过面扫描结果可知,喷熔涂层中发现Mg元素,说明基体中的Mg元素发生了扩散。通过电化学测试可知,喷熔Al涂层的自腐蚀电压为-1.45 V,比AZ31B镁合金的自腐蚀电压(-1.5 V)降低了0.05 V;喷熔Al涂层的自腐蚀电流密度为1.58×10~(-4) A/cm~2,约为AZ31B镁合金自腐蚀电流密度(8.66×10-4 A/cm2)的1/5。由浸泡实验可知,喷熔Al涂层的平均腐蚀速率约为AZ31B镁合金的1/5倍。喷熔Al涂层的显微硬度是AZ31B镁合金基体硬度的2.9倍。结论喷熔Al涂层的组织较好,性能比镁合金基体有所提高。  相似文献   

4.
目的提高镁合金的耐腐蚀性能。方法采用超音速火焰喷涂技术,在AZ61镁合金表面引入Ni Cr Al作为中间层,最终在镁合金表面构筑一层铁基非晶涂层。通过扫描电子显微镜、X射线衍射仪、差热分析仪、显微硬度测试仪、开路电位测试仪、动电位极化测试仪、X射线光电子能谱仪和接触角测量仪,分别评价了镁合金基体和铁基非晶涂层的形貌特征、微观结构、热稳定性、力学性能、腐蚀行为和表面性质。结果在AZ61镁合金表面成功构筑了一层厚度约200~240μm的铁基非晶涂层,该涂层在XRD有效分辨率内呈单一非晶结构。热分析结果表明,该非晶涂层的起始晶化温度可达657℃,具有极高的热稳定性。铁基非晶涂层和AZ61镁合金的显微硬度分别为892HV和71HV,合金表面显微硬度提高了10倍以上。在模拟海水中,AZ61镁合金和铁基非晶防护涂层的稳态开路电位分别为-0.59V和-1.58V,自腐蚀电流密度分别为80μA/cm~2和4μA/cm~2;在酸雨介质中,镁合金和非晶涂层的稳态开路电位分别为-0.45 V和-1.51 V,自腐蚀电流密度分别为7.27μA/cm~2和1.64μA/cm~2。去离子水在AZ61镁合金的表面润湿角为(59.8±1.5)°,而铁基非晶涂层的接触角为(74.4±0.6)°。结论在镁合金表面构筑铁基非晶涂层,可以显著提高镁合金的耐蚀性,同时非晶涂层高的热稳定性和显微硬度,意味着良好的耐热和耐磨性能。  相似文献   

5.
采用氧乙炔火焰喷涂方法,在AZ31B镁合金表面喷涂Al分别添加5%、10%、15%的(AlB_(12)+Al_2O_3)复合涂层,并对复合涂层进行热压处理;采用扫描电镜(SEM)观察复合涂层的微观组织,X射线衍射仪(XRD)检测涂层的物相,电化学工作站测试复合涂层的耐蚀性,显微硬度检测复合涂层的硬度,摩擦磨损机检测涂层的耐磨性能。结果表明:随着(AlB_(12)+Al_2O_3)含量的增加,复合涂层的孔隙率及孔洞减少,涂层致密;腐蚀电位从-1.5 V升高到-1.15 V,腐蚀电流从8.66×10~(-4)A/cm~2降到2.82×10~(-4)A/cm~2;硬度从66 HV增加到225 HV;磨痕也是从深到浅。综上所述,(AlB_(12)+Al_2O_3)复合涂层显著改善了镁合金的耐磨和耐蚀性能。  相似文献   

6.
目的研究Mg_3Sb_2含量对Al-Mg_3Sb_2复相涂层的组织、硬度和摩擦学性能的影响,对比分析AZ31B镁合金基体、纯Al涂层和添加不同含量的Mg_3Sb_2之后涂层性能的差异。方法通过火焰喷涂技术在AZ31B镁合金表面制备了Al-Mg_3Sb_2复相涂层。利用扫描电镜(SEM)观察了涂层的截面形貌,利用X射线衍射仪(XRD)分析了涂层的物相组成。通过显微硬度计测试了AZ31B和涂层的硬度,通过摩擦磨损试验仪测试了AZ31B和涂层的摩擦学性能,并通过超景深三维显微镜测试了试样的磨痕宽度、深度及磨损体积。结果经火焰喷涂后可得到组织致密的复相涂层,涂层中的物相主要为Mg_3Sb_2和Al。涂层的平均硬度随Mg_3Sb_2含量的增加而增加,最高可达334.2HV0.025,是AZ31B的4.14倍。摩擦磨损试验中,涂层的摩擦系数随着Mg_3Sb_2含量的增加而减小,但都大于AZ31B的摩擦系数;涂层的磨损率随着Mg_3Sb_2含量的增加而减小,60%Mg_3Sb_2和80%Mg_3Sb_2涂层的磨损率小于AZ31B的磨损率,其他涂层的磨损率大于AZ31B的磨损率,80%Mg_3Sb_2涂层的耐磨性最好,比AZ31B下降了63.26%。随着Mg_3Sb_2含量的增加,Al-Mg_3Sb_2复相涂层的磨痕表面犁沟逐渐变浅并消失。结论 Mg_3Sb_2的加入可以提高涂层的硬度,随着其含量的增加,涂层的耐磨性逐渐提高。  相似文献   

7.
镁合金表面等离子喷涂Al2O3-TiO2陶瓷涂层的耐腐蚀性研究   总被引:1,自引:1,他引:0  
李兴成  陈菊芳 《表面技术》2012,41(2):20-22,34
采用等离子喷涂技术在AZ31镁合金表面制备Al2O3-13%TiO2陶瓷复合涂层,对涂层的微观组织进行了观察分析,测试了涂层的表面硬度.通过极化曲线和浸泡腐蚀试验,对比研究了镁合金基材及喷涂陶瓷涂层的试样在5% NaCl溶液中的耐腐蚀性能.结果表明:涂层镁合金试样的硬度和耐腐蚀性优于基体镁合金,但当腐蚀液透过涂层孔隙时...  相似文献   

8.
范春  龙威  周小平 《表面技术》2018,47(4):260-266
目的研究Al-Mg_2Si复合涂层在3.5%NaCl溶液中的腐蚀-磨损性能。方法用电化学工作站(CHI660E)、腐蚀-磨损试验机测试试样的电化学行为及实时监测在3.5%NaCl溶液中的开路电位、摩擦系数和干摩擦性能,并采用扫描电镜(SEM)、超景深三维显微镜对磨痕特征进行表征。结果镁合金自腐蚀电位为-1.4888V,腐蚀电流密度为2.817×10~(-3) A/cm~2。与镁合金基体相比,Al-Mg_2Si复合涂层的自腐蚀电位正移了0.5288V,腐蚀电流密度降低了3个数量级。腐蚀磨损过程中,Al-Mg_2Si复合涂层的开路电位(OCP)为-0.9202 V,比镁合金基体高0.5713 V。干摩擦过程中,复合涂层的稳定摩擦系数为0.28,比镁合金低0.07。复合涂层干、湿磨损率相差44.72×10~(-4) mm~3/(N?mm),其值是镁合金基体干、湿磨损率相差值的0.52倍,且均远远大于各自纯机械磨损率。结论在腐蚀磨损过程中,腐蚀是造成磨蚀损失的主要原因,且Al-Mg_2Si复合涂层的耐磨蚀性能优于镁合金基体。  相似文献   

9.
目的研究Mg_3Sb_2含量对Al-Mg_3Sb_2复相涂层组织、耐蚀性和硬度的影响,对比纯Al涂层和添加不同含量Mg_3Sb_2涂层性能的差异。方法采用氧乙炔火焰喷涂技术和自制的Mg_3Sb_2粉末,在AZ31B镁合金表面制备不同成分的Al-Mg_3Sb_2复相涂层。采用扫描电镜(SEM)观察了涂层的微观组织,利用X射线衍射仪(XRD)分析了球磨粉末和涂层的物相组成,通过电化学工作站(CHI660e)对试样在3.5%Na Cl溶液中进行电化学腐蚀性能测试,并用显微硬度计测试了涂层的硬度。结果经火焰喷涂之后,获得了不同成分的Al-Mg_3Sb_2复相涂层,涂层中的物相主要为Al和Mg_3Sb_2。当Mg_3Sb_2的质量分数为40%和60%时,涂层组织致密,气孔、裂纹等组织缺陷较少。Tafel极化曲线测试中,随着第二相Mg_3Sb_2质量分数的增加,涂层的腐蚀电位逐渐正移。当质量分数达到80%时,其腐蚀电位为-0.9819 V,比纯Al涂层正移417.3 m V,腐蚀电流密度为0.048×10-3 A/cm2,约是纯Al涂层的1/2。显微硬度结果显示随着Mg_3Sb_2含量的增加,涂层的硬度逐渐提高,当质量分数达到80%时,涂层的平均硬度达到334.2HV,是纯Al涂层的6.79倍。结论Mg_3Sb_2的加入可以获得组织较好的涂层,随着其含量的增加,涂层的耐蚀性和显微硬度逐渐提高。  相似文献   

10.
镁合金等离子喷涂Al/Al_2O_3涂层的耐腐蚀性能   总被引:1,自引:1,他引:1  
采用等离子喷涂技术在AZ31镁合金表面制备Al/Al_2O_3复合涂层,测试了镁合金及表面喷涂有Al/Al_2O_3复合涂层的镁合金试样的极化曲线,研究了没有涂层、经封孔处理和未经封孔处理的喷涂有复合涂层的镁合金三种试样在浸泡腐蚀和5%NaCl盐雾腐蚀情况下的耐腐蚀性能及其腐蚀行为.结果表明,经封孔处理的Al/Al_2O_3复合涂层镁合金试样在上述腐蚀条件下的耐腐蚀性均优于镁合金和涂层未封孔处理的试样,在浸泡试验中未封孔处理的涂层试样比镁合金腐蚀更加严重,在盐雾试验中却优于镁合金.  相似文献   

11.
Laser surface cladding with Al-Si powders was applied to a Mg-6Zn-1Ca magnesium alloy to improve its surface properties. The microstructure, phase components and chemical compositions of the laser-clad layer were analyzed by using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The results show that the clad layer mainly consists of α-Mg, Mg2Si dendrites, Mg17Al12 and Al3Mg2 phases. Owing to the formation of Mg2Si, Mg17Al12 and Al3Mg2 intermetallic compounds in the melted region and grain refinement, the microhardness of the clad layer (HV0.025 310) is about 5 times higher than that of the substrate (HV0.025 54). Besides, corrosion tests in the NaCl (3.5%, mass fraction) water solution show that the corrosion potential is increased from –1574.6 mV for the untreated sample to –128.7 mV for the laser-clad sample, while the corrosion current density is reduced from 170.1 to 6.7 µA/cm2. These results reveal that improved corrosion resistance and increased hardness of the Mg-6Zn-1Ca alloy can be both achieved after laser cladding with Al-Si powders.  相似文献   

12.
为了研究Ce(SO4)2浓度与合金镀层表面性能的关系,采用喷射电沉积法制备了一系列Ni-W-Ce合金镀层工件。用扫描电镜(SEM)观察了镀层的表面结构,并用能谱仪(EDS)检测镀层中的元素组成。XRD分析表明,镀层存在晶格畸变。LEXT4100激光共焦显微镜观察磨损痕迹,发现磨损机理发生了变化。结果表明,添加Ce(SO4)2改善了涂层的表面微观形貌,当浓度为0.5g/L时,涂层的表面质量最佳。同时,显微硬度、耐磨性和耐腐蚀性随浓度的增加呈现先好后坏的规律。当Ce(SO4)2浓度为0.5g/L时,显微硬度达到峰值519.69HV0.1。此时,镀层耐磨性最好,其耐磨性表征参数均取得最小值。且镀层的耐蚀性也最好,腐蚀电位为-0.5537V,电弧电抗半径最小。  相似文献   

13.
为了提高镁合金的耐腐蚀性能,基于层状双氢氧化物(LDHs)膜在ZK60镁合金表面制备了超疏水(SH)涂层。涂层制备过程中引入电场辅助,研究了工作电流密度对涂层性能的影响。结果表明,工作电流密度显著影响LDHs膜的微观结构,这对SH涂层的疏水性具有重要影响。当工作电流密度为25 mA/cm2时,SH涂层表面呈现均匀的微纳米结构,并表现出超疏水性。超疏水涂层的腐蚀电流密度(Icorr=9×10-7 A·cm-2)比ZK60基体的腐蚀电流密度(Icorr=3×10-5 A·cm-2)低了2个数量级,表现出优异的耐腐蚀性。  相似文献   

14.
采用超音速大气等离子喷涂制备全包覆TiB2-SiC涂层,研究了TiB2-SiC涂层在400和800 ℃的氧化性能,并探究其氧化机理。对TiB2-SiC涂层在900 ℃下的抗铝熔盐腐蚀性能进行研究,并探讨其耐熔盐腐蚀机理。结果表明,超音速大气等离子喷涂制备的TiB2-SiC涂层具有良好的抗氧化性,在400 ℃的氧化速率常数为1.92×10-5 mg2·cm-4·s-1,在800 ℃的氧化速率常数为1.82×10-4 mg2·cm-4·s-1。超音速大气等离子喷涂制备的TiB2-SiC涂层在900 ℃下具有良好的抗熔盐腐蚀性能,熔盐腐蚀后TiB2-SiC涂层都保持致密结构,未发生涂层的开裂及剥落。  相似文献   

15.
In the present study, the corrosion resistance and bioactivity of AZ91HP magnesium alloy were improved by plasma spraying hydroxyapatite (HA) coating. X-ray diffraction measurements indicated that the coating formed amorphous and little β-Ca3 (PO4)2 besides of HA. The corrosion resistance and bioactivity of the coating and magnesium alloy in simulated body fluid were investigated using immersion test. The coating showed lower corrosion rate and better bioactivity than magnesium alloy. The coating significantly improved the hydrophilicity of Mg alloy. The prothrombin time of the coating was 18 s, and the prothrombin time of Mg alloy was 11 s, so the coating had better anticoagulant activity.  相似文献   

16.
ZM5镁合金无铬前处理化学镀镍层的性能   总被引:1,自引:0,他引:1  
采用优化的Na4P2O7+Na2SO4+NaNO3体系的化学蚀刻无铬前处理化学镀镍工艺,在ZM5镁合金上制备Ni-P镀层。利用扫描电镜、能谱仪、X射线衍射仪分析镀层的微观形貌、成分和相结构。通过电化学方法和摩擦磨损试验评价了镀层的耐蚀性和耐磨性。结果表明:无铬前处理工艺制备的镀层中P的质量分数为12.90%。与ASTM标准的含铬前处理工艺得到的镀层的耐蚀性和耐磨性相比,无铬前处理得到的镀层的自腐蚀电位为-0.506V,腐蚀电流密度为2.132×10-6 A/cm2,接近ASTM工艺含铬前处理得到的镀层的耐蚀性能;同时其磨损率为3.056×10-4 mg/s,与ASTM工艺的1.778×10-3 mg/s相比,其抗摩擦磨损性能明显优于含铬前处理的镀层。无铬前处理化学镀镍显著提高了ZM5镁合金的耐蚀性和耐磨性。  相似文献   

17.
In this work, Ni and Ni–Al2O3 nanocomposite coatings were applied on AZ91 magnesium alloy using a pulse plating process and the corrosion resistance of coated samples was evaluated by means of the potentiodynamic polarisation method in 3.5?wt-% NaCl solution. Field emission scanning electron microscopy was employed to identify microstructure and morphology of the coatings. Vickers microhardness and pin-on-disc wear tests were also used to investigate mechanical properties of the coatings. The polarisation test revealed that the pure Ni coating on AZ91 along with the presence of nanoparticles were key factors leading to a reduction in the corrosion current density and the improvement of corrosion resistance so that the corrosion current density of 210.45?µA?cm?2 for the substrate (AZ91) decreases to 31.92 and 1.54?µA?cm?2 by applying pure Ni and Ni–Al2O3 nanocomposite coatings, respectively. Furthermore, Ni–Al2O3 nanocomposite coating increased the microhardness and wear resistance compared to the substrate up to 435 and 340%, respectively.  相似文献   

18.
镁合金表面冷喷涂纳米WC-17Co涂层及其性能   总被引:3,自引:0,他引:3  
采用冷喷涂和超音速火焰喷涂(HVOF)在AZ80镁合金表面制备了纳米WC-17Co涂层。利用SEM分析了原始粉末形貌、喷涂粒子沉积行为及涂层显微结构,并采用球盘式摩擦磨损实验机考察了涂层的摩擦磨损性能。结果表明:采用冷喷涂工艺可在AZ80镁合金基体上制备出高质量的WC-17Co涂层,涂层的显微硬度为(1 380±82)HV,磨损率为9.1×10-7 mm3/Nm,其耐磨性较HVOF制备的WC-17Co涂层提高了1倍,较镁合金基材提高了3个数量级。研究表明,冷喷涂WC-17Co涂层在不对镁合金基体产生热影响的情况下,可以显著提高镁合金的表面性能,是一种新型镁合金表面强化工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号