首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The photoassisted reduction of metal ions and organic dye by metal-deposited Degussa P25 TiO2 nanoparticles was investigated. Copper and silver ions were selected as the target metal ions to modify the surface properties of TiO2 and to enhance the photocatalytic activity of TiO2 towards methylene blue (MB) degradation. X-ray powder diffraction (XRPD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were used to characterize the crystallinity, chemical species and morphology of metal-deposited TiO2, respectively. Results showed that the particle size of metal-deposited TiO2 was larger than that of Degussa P25 TiO2. Based on XRPD patterns and XPS spectra, it was observed that the addition of formate promoted the photoreduction of metal ion by lowering its oxidation number, and subsequently enhancing the photodegradation efficiency and rate of MB. The pseudo-first-order rate constant (kobs) for MB photodegradation by Degussa P25 TiO2 was 3.94 × 10− 2 min− 1 and increased by 1.4-1.7 times in kobs with metal-deposited TiO2 for MB photodegradation compared to simple Degussa P25 TiO2. The increase in mass loading of metal ions significantly enhanced the photodegradation efficiency of MB; the kobs for MB degradation increased from 3.94 × 10− 2 min− 1 in the absence of metal ion to 4.64-7.28 × 10− 2 min− 1 for Ag/TiO2 and to 5.14-7.61 × 10− 2 min− 1 for Cu/TiO2. In addition, the electrons generated from TiO2 can effectively reduce metal ions and MB simultaneously under anoxic conditions. However, metal ions and organic dye would compete for electrons from the illuminated TiO2.  相似文献   

2.
Drinking water was treated with ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate to investigate the kinetics of membrane damage of native drinking water bacterial cells. Membrane damage was measured by flow cytometry using a combination of SYBR Green I and propidium iodide (SGI+PI) staining as indicator for cells with permeabilized membranes and SGI alone to measure total cell concentration. SGI+PI staining revealed that the cells were permeabilized upon relatively low oxidant exposures of all tested oxidants without a detectable lag phase. However, only ozonation resulted in a decrease of the total cell concentrations for the investigated reaction times. Rate constants for the membrane damage reaction varied over seven orders of magnitude in the following order: ozone > chlorine > chlorine dioxide ≈ ferrate > permanganate > chloramine. The rate constants were compared to literature data and were in general smaller than previously measured rate constants. This confirmed that membrane integrity is a conservative and therefore safe parameter for disinfection control. Interestingly, the cell membranes of high nucleic acid (HNA) content bacteria were damaged much faster than those of low nucleic acid (LNA) content bacteria during treatment with chlorine dioxide and permanganate. However, only small differences were observed during treatment with chlorine and chloramine, and no difference was observed for ferrate treatment. Based on the different reactivity of these oxidants it was suggested that HNA and LNA bacterial cell membranes have a different chemical constitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号